
Accurate Linear Cutting-Plane Relaxations for
ACOPF

Daniel Bienstock · Mat́ıas Villagra

Abstract We present a pure linear cutting-plane relaxation approach for
rapidly proving tight and accurate lower bounds for the Alternating Cur-
rent Optimal Power Flow Problem (ACOPF) and its multi-period extension
with ramping constraints. Our method leverages outer-envelope linear cuts for
well-known second-order cone relaxations for ACOPF together with modern
cut management techniques and reformulations to attain numerical stability.
These techniques prove effective on a broad family of ACOPF instances, in-
cluding the largest ones publicly available, quickly and robustly yielding tight
bounds. Additionally, we consider the (frequent) case where an ACOPF in-
stance is handled following a small or moderate change in problem data, e.g.,
load changes and generator or branch shut-offs. We provide significant com-
putational evidence, on single and multi-period ACOPF instances, that the
cuts computed on the prior instance provide very good lower bounds when
warm-starting our algorithm on the perturbed instance.
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1 Introduction

The Alternating-Current Optimal Power Flow (ACOPF) problem is a well-
known challenging computational task. It is nonlinear, non-convex and with
feasible region that may be disconnected; see [44], [22] and Proposition 8.
In [71,18] it is shown that the feasibility version of the problem is strongly
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NP-hard, and [53] proved that this decision problem is weakly NP-hard on
star-networks.

In the current state-of-the-art, special-purpose interior point methods are
empirically successful at computing very good solutions but cannot provide any
bounds on solution quality. Strong lower bounds are available through second-
order cone (SOC) relaxations [46,50]; however all solvers struggle when han-
dling such relaxations for large or even medium cases (see [31]; we will provide
additional evidence for this point). Other techniques, such as spatial-branch-
and-bound methods applied to McCormick (linear) relaxations of quadratically-
constrained formulations for ACOPF, tend to yield poor performance unless
augmented by said SOC inequalities – interior point methods are still needed
for upper bounds.

In this paper we present a fast (linear) cutting-plane method used to obtain
tight relaxations for ACOPF, and its multi-period extension with ramping
constraints, by appropriately handling the SOC relaxations. Our approach
scales well to the largest ACOPF instances currently available. Our research
thrust is motivated by three key observations:

(1) Linearly constrained convex quadratic optimization technology is, at this
point, very mature – many solvers are able to handle massively large in-
stances quickly and robustly; these attributes extend to the case where
formulations are dynamically constructed and updated, as would be the
case with a cutting-plane algorithm.

(2) Whereas the strength of the SOC relaxations has been known for some
time, an adequate theoretical understanding for this behavior was not avail-
able.

(3) In power engineering practice, it is often the case that a power flow prob-
lem (either in the AC or DC version) is solved on data that reflects a
recent, and likely limited, update on a case that was previously handled.
In power engineering language, a ’prior solution’ was computed, and the
problem is not solved ’from scratch.’ In the context of our type of algo-
rithm, this feature opens the door for the use of warm-started formulations,
i.e., the application of a cutting plane procedure that leverages previously
computed cuts to obtain sharp bounds more rapidly than from scratch.

As an additional attribute arising from our work, our formulations are, of
course, linear. This feature paves the way for effective pricing schemes, i.e.,
extensions of the locational marginal pricing setup currently used for real-time
and day-ahead energy markets [61,40,12].
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Our contributions

– We describe very tight and numerically stable linearly-constrained relax-
ations for ACOPF. The relaxations can be constructed and solved robustly
and quickly via a cutting-plane algorithm that relies on proper cut manage-
ment. On medium to (very) large instances our algorithm is competitive
with or better than what was previously possible using nonlinear relax-
ations, both in terms of bound quality and solution speed. The robustness
of our method is especially prominent in the multi-period setting, where
our method is able to provide tight lower bounds with high accuracy, while
the nonlinear relaxations are simply out of reach for nonlinear solvers.

– We provide a theoretical justification for the tightness of the SOC relax-
ation for ACOPF as well as for the use of our linear relaxations. As we
argue, the SOC constraints (or tight relaxations thereof, or equivalent
formulations) are necessary in order to achieve a tight relaxation. More
precisely, we point out that the (linear) active-power loss inequalities (in-
troduced in [15]) are outer-cone envelope approximations for the SOC con-
straints. Moreover, the loss inequalities provide a fairly tight relaxation
because they imply that every unit of demand and loss is matched by a
corresponding unit of generation (a fact not otherwise guaranteed) via a
flow-decomposition argument [13].

– We demonstrate, through extensive numerical testing, that the warm-start
feature for our cutting-plane algorithm is indeed effective. It is worth noting
that this capability stands in contrast to what is possible using nonlinear
(convex) solvers, in particular interior point methods. We also show numer-
ical convergence of the dual variables of active-power balance constraints
(which are used as input for computing locational marginal prices).

– The warm-start capability yields practicable and tight relaxations formulti-
period formulations of ACOPF. The tightness of our formulations is certi-
fied through a heuristic for such problems.

– We bring forth to the ACOPF literature a discussion on approximate solu-
tions to convex relaxations and their accuracy as lower bounds. We argue
that linearly-constrained relaxations with convex quadratic objective pos-
sess robust theoretical bounding guarantees, in sharp contrast to what
nonlinear relaxations such as SOCPs can offer.

The structure of this paper is as follows: in Section 2 we formally define
ACOPF and its multi-period extension; in Section 3 we review the literature
on convex relaxations for ACOPF with emphasis on linear relaxations; in Sec-
tion 4 we describe two second-order cone relaxations, provide theoretical justi-
fication for the tightness of these relaxations, and introduce a new numerically
better-behaved conic relaxation; in Section 5 we describe our cutting-plane
framework, as well as the cut separation and cut management heuristics de-
ployed in our algorithm; in Section 6 we provide a discussion on the accuracy
of lower bounds of convex relaxations for ACOPF; in Section 7 we present
significant computational experiments on the performance of SOCPs versus
our algorithm and warm-started formulations for the single and multi-period
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settings; and finally in Section 8 we conclude and outline future research di-
rections. Our proofs can be found in Appendix 8.

This work significantly extends a much shorter conference version of this
paper where the single-period setting is addressed [19]. The relaxation in Sec-
tion 4.5 is new, as well as the multi-period computational results and the sec-
tions on accuracy and behavior of the dual variables of active-power balance
constraints.

Fig. 1: ACOPF Formulation using polar coordinates

[ACOPF] : min
∑
k∈G

Fk(P
g
k ) (1a)

subject to:

∀ bus k ∈ B: ∑
{k,m}∈δ(k)

Pkm =
∑
ℓ∈Gk

P g
ℓ − P d

k (1b)

∑
{k,m}∈δ(k)

Qkm =
∑
ℓ∈Gk

Qg
ℓ −Qd

k (1c)

∀ branch {k,m} ∈ E:
Pkm = Gkk|Vk|2 + |Vk||Vm|(Gkm cos(θk − θm) +Bkm sin(θk − θm)) (1d)

Pmk = Gmm|Vm|2 + |Vk||Vm|(Gmk cos(θk − θm)−Bmk sin(θk − θm)) (1e)

Qkm = −Bkk|Vk|2 − |Vk||Vm|(Bkm cos(θk − θm)−Gkm sin(θk − θm)) (1f)

Qmk = −Bmm|Vm|2 − |Vk||Vm|(Bmk cos(θk − θm) +Gmk sin(θk − θm)) (1g)

∀ generator k ∈ G:
Pmin
k ≤ P g

k ≤ Pmax
k (1h)

Qmin
k ≤ Qg

k ≤ Qmax
k (1i)

∀ bus k ∈ B:
(V min

k )2 ≤ |Vk|2 ≤ (V max
k )2 (1j)

∀ branch {k,m} ∈ E:
max

{
P 2
km +Q2

km, P 2
mk +Q2

mk

}
≤ Ukm (1k)

|θk − θm| ≤ ∆̄km (1l)

2 Formal Problem Statement

In standard (single-period) ACOPF we are given, as input, a power system
consisting of an undirected network endowed with numerical parameters de-
scribing physical attributes; a set of generators, and a set of complex-valued
loads (or demands). The objective of the problem is to set complex voltages
at the buses, and generator outputs, so as to satisfy loads at minimum cost –
cost is incurred by the generators – while transmitting power following laws of
physics and equipment constraints. A mathematical description is given above
in (1) using the so-called polar representation.
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We denote by N := (B, E) the network, where B denotes the set of nodes,
which (following power engineering conventions) we will refer to as buses, and
E denotes the set of edges, which we will refer to as transmission lines or
transformers, or generically, branches. We denote by G the set of generators of
the grid, each of which is located at some bus; for each bus k ∈ B, we denote
by Gk ⊆ G the generators at bus k.

Each bus k has a fixed load P d
k + jQd

k, where P d
k ≥ 0 is termed active

power load, and −∞ < Qd
k < +∞ is reactive power load; lower V min

k ≥ 0 and
upper V max

k ≥ 0 voltage limits. For each branch {k,m} we are given thermal
limit 0 ≤ Ukm ≤ +∞, and maximum angle-difference |∆km| ≤ π. Thus, the
goal is to find voltage magnitude |Vk| and phase angle θk at each bus k, active
P g and reactive Qg power generation for every generator g, so that power is
transmitted by the network so as to satisfy active P d and reactive Qd power
demands at minimum cost.

In the above formulation (1), the physical parameters of each line {k,m} ∈
E are described by

Ykm :=

(
Gkk + jBkk Gkm + jBkm

Gmk + jBmk Gmm + jBmk,

)
which is the (complex) admittance matrix of the transmission line {k,m}
(see [11] for background on transmission line modeling). These parameters
model, in (1d)-(1g), active and reactive power flows. Moreover, inequalities (1k)-
(1l) correspond to flow capacity constraints, and inequalities (1h)-(1j) impose
operational limits on power generation and voltages. Constraints (1b)-(1c)
impose active and reactive power balance; the left-hand side represents power
injection at bus k ∈ B, while the right-hand side represents net power gener-
ation (generation minus demand) at bus k. Finally, for each generator k ∈ G,
it is customary to assume the functions Fk : R → R in the objective (1a) are
convex piecewise-linear or convex quadratic.

We remark that, often, constraint (1l) is not present, and, when explicitly
given, concerns angle limits ∆̄km that are small (smaller than π/2). Under such
assumptions there are equivalent ways to restate (1l) involving the arctangent
function and other variables present in the formulation (the same applies to
convex relaxations).

Please refer to the surveys [60], [14] for alternative, but equivalent, ACOPF
formulations.

2.1 Multi-Period Formulation

Our techniques apply to a multi-period setting for ACOPF; this extension is
important because it corresponds to the way that energy markets are operated.
We will rely on a simple multi-period setting for ACOPF, where in each period
t there is a standard ACOPF formulation. The variables for this period are
linked to those other periods t′ ̸= t1 via generator ramping constraints (defined

1 As a simple case, t′ = t− 1.
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below). Other variants of this problem include “uptime/downtime” costs for
generators, energy storage reserve requirements, and network topology control,
among others (see e.g. [26,42,45]).

The multi-period problem can be described as follows: given a time-horizon
of T ∈ N periods, a time-invariant undirected network endowed with numerical
parameters describing physical attributes, and complex network loads P d

i,t +

jQd
i,t for i ∈ B and t ∈ {0, . . . , T−1}, the goal is to set complex voltages Vi,t at

the buses, and generator outputs P g
k,t+jQg

k,t for k ∈ G and t ∈ {0, . . . , T−1}, so
as to satisfy loads at minimum cost while transmitting power following laws of
physics and equipment costs, and satisfying generator ramping constraints. For
every generator k ∈ G, and any time-period t ∈ {0, . . . , T − 1}, the associated
ramping up and down constraints are given by2

(1 + ruk,t)P
g
k,t − P g

k+1,t ≥ 0 (2a)

(1− rdk,t)P
g
k,t − P g

k+1,t ≤ 0. (2b)

where ruk,t, r
d
k,t ∈ (0, 1) are the ramping up and down rates, respectively. In

summary, multi-period ACOPF for a time-invariant network (B, E) with ratio-
nal data (P d

i,t, Q
d
i,t)i∈B,t∈{0,...,T−1} and (Ykm, Ukm){k,m}∈E can be defined by

(1) and (2) on variables

(Vi,t, θi,t)i∈B, (Pkm,t, Pmk,t, Qkm,t, Qmk,t){k,m}∈E , (P
g
k,t, Q

d
k,t)k∈G

for each t ∈ {0, . . . , T − 1}.

3 Literature Review

First, we will briefly review the extensive literature on convex relaxations for
ACOPF. An extensive review is provided in [60].

The simplest relaxations use, a starting point, a rectangular formulation of
the ACOPF problem (rather than the polar setup described above) yielding
a QCQP (quadratically constrained quadratic program) and rely on the well-
known McCormick [57] reformulation to linearize bilinear expressions. This
straightforward relaxation has long been known to provide very weak bounds.

The SOC relaxation introduced in [46], which is widely known as the Jabr
relaxation (see Section 4.1), has had significant impact due to its effectiveness
as a lower bounding technique. Briefly, it linearizes the power flow defini-
tions (1d)-(1g) using |B| + 2|E| additional variables and adds |E| valid SOC
inequalities (see Section 4.1 for a complete derivation). Moreover, in [46] it is
shown that for radial transmission networks, i.e., networks that have a tree
structure, the load flow problem can be solved via an SOCP whose conic con-
straints correspond to the latter SOC inequalities. While on the one hand the
SOC relaxation is strong, it also yields formulations that, in the case of large
ACOPF instances, are very challenging even for the best solvers.

2 Since P g
k can potentially be negative for some generator g ∈ G, then the latter constraints

need to be formulated in terms of the absolute value of P g
k .
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A wide variety of techniques have been proposed to strengthen the Jabr
relaxation. In [50] arctangent constraints are associated with cycles, with the
goal of capturing the relationship between the additional variables in the Jabr
relaxation and phase angles – these are formulated as bilinear constraints, and
then linearized via McCormick inequalities. The two other strengthened SOC
formulations proposed in [50] add polyhedral envelopes for arctangent func-
tions, and dynamically generate semi-definite cuts for cycles in the network.
[51] proposes a minor-based formulation for ACOPF (which is a reformulation
of the rank-one constraints in the QCQP formulation for ACOPF [60]), which
is relaxed to generate cutting-planes improving on the tightness of the Jabr
relaxation. [31] introduced the Quadratic Convex (QC) relaxation (an SOC
relaxation) which is related to the Jabr relaxation (Section 4.2), strengthened
with polyhedral envelopes for sine, cosine and bilinear terms appearing in the
power flow definitions (1d)-(1g). A novel machine learning-based approach is
followed in [62] to obtain fast dual bounds for the Jabr relaxation for cases
with up to 2869 buses.

A semidefinite programming relaxation based on the Shor relaxation [66] is
presented in [7] followed by [52]. This formulation is at least as tight as the Jabr
relaxation at the expense of higher computational cost [51]. In [52] it is proven
that the SDP relaxation achieves zero duality gap under appropriate network
assumptions. Experiments with SDP relaxations have been constrained by
current SDP technology capabilities.

Next we review linear relaxations for ACOPF. [15,16] (also see [60]) intro-
duce the so-called active-power loss linear inequalities which impose the fact
that on any branch the active power loss is nonnegative. The resulting relax-
ation, which we term the linear-loss-relaxation, is shown to yield good lower
bounds. In a similar vein, [30] propose the network flow and the copper plate
relaxations. The network flow relaxation amounts to the linear loss-relaxation
with additional sparse linear inequalities that lower bound net reactive power
losses in appropriate cases3. Moreover, the “copper plate” relaxation is ob-
tained from the network flow relaxation by neglecting the power flow equa-
tions entirely via aggregation of all active and reactive power injections in the
network. Along these lines [69] provides a relaxation which enforces a (valid)
linear relationship between active and reactive power losses by relaxing linear
combinations of (1d)-(1g).

The technique in [15], inspired by Glover [39], ϵ-approximates the products
of continuous variables (arising from the rectangular formulation of ACOPF
[60]), to arbitrary precision, using binary expansions and McCormick inequal-
ities. This process yields a mixed integer linear ϵ-approximation for ACOPF.
Another linear ϵ-approximation, which is based on the Jabr relaxation, is used
in [59]. Their main contribution is using the SOC linear approximation de-
veloped in [10] which requires O(kℓ log(1/ϵ)) linear constraints and additional
variables to ϵ-approximate a conic constraint of row size kℓ ∈ N. One of the al-

3 Note that it is physically possible to have reactive power gains, i.e., negative reactive
losses, see [11]).
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gorithms in [58] is a successive linear programming (SLP) method – originally
introduced by Kelley in [48] to address convex problems – which is applied to
the Jabr relaxation. This process yields a linear relaxation for ACOPF, which
was [58] on instances with up to 3375 buses.

The well-known, and widely used in practice, Direct Current Optimal
Power Flow (DCOPF) model is a linear approximation for ACOPF [67,24]. It
is based on a number of simplifications that are approximately valid under nor-
mal system operations; under this formulation active power losses are zero and
reactive power is completely ignored [11]. A main drawback of this formulation
is that AC feasible solutions might not even be feasible for DCOPF [9] – losses
are the main cause of infeasibility – in contrast to the previously mentioned
linear ϵ-approximations. In any case, this linear model is the canonical ap-
proximation of ACOPF for many extensions and applications such as welfare
maximization and pricing in energy markets, day-ahead security-constrained
unit commitment (SCUC), real-time security-constrained dispatch (SCD) and
transmission switching (TS) among many others.

We refer the reader to the surveys [60,14,76] for additional material on
convex relaxations for single-period ACOPF.

Single-period convex relaxations can naturally be extended to multi-period
ACOPF. To the best of our knowledge, all of the computational experiments
address small to medium-sized cases – which is not surprising given that the
single-period (nonlinear) convex relaxations are already challenging enough
(see e.g. Section 7.1.2). It is worth mentioning that most of the research in the
multi-period setting has focused on obtaining AC primal bounds for numerous
multi-period ACOPF features. Multi-period Jabr SOCPs are solved in: [56] to
find approximate solutions to a robust multi-period ACOPF; [33] and [8] as
subproblems of Benders decomposition algorithms for AC-constrained UC; [63]
for SOC-constrained UC; and a multi-period mixed integer Jabr SOCP is
solved [55] for AC-constrained UC.

Moreover, [77] solves a sequence of Jabr SOCP relaxations using penalty
terms to enforce AC feasibility. On the other hand, notable linear approxi-
mations for multi-period ACOPF are the copper-plate linear, DCOPF, and
strengthened versions of DCOPF [74] which account for reactive power and
voltage magnitudes. These approximations are key ingredients for solving scal-
able UC or Security Constrained ACOPF (SC-ACOPF). In [3] a linearized
multi-period Security Constrained Stochastic ACOPF based on the strength-
ened DC approximation [74] is presented.

Next, we succinctly review literature on heuristics – mostly based on con-
vex relaxations or linear approximations – used to find AC feasible solutions.
In the single-period setting, the linear programming Hot-Start and Warm-
Start approximation models are proposed in [32] for finding locally optimal
single-period AC solutions. The Hot-Start model assumes there is a solved
AC base-point solution available, and it uses to fix voltage magnitudes in
the power AC power flow definitions. Morevoer, they approximate sin(θ) by
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θ and use a linear convex approximation of cos(θ) (under the assumption
θ ∈ (−π/2, π/2)). Since fixing the voltages might be too restrictive in some
cases, their Warm-Start model chooses takes a subset of the buses as target
buses, and linearizes deviations from the targeted voltage magnitudes. In [26]
and [58] SLP algorithms are proposed for finding locally optimal single-period
AC solutions.

With respect to the multi-period setting, [25] presents an outer-approximation
iterative algorithm for the UC problem with AC network constraints (i.e, an
multi-period ACOPF is being solved) – this method solves a finite sequence of
MILP master problems and nonlinear subproblems (ACOPF with fixed binary
variables). The nonlinear subproblems are tackled using the SLP presented
in [27]. Moreover, in [33] an SLP is used as a penalty method to recover a
UC problem with AC-constraints feasible solution from the multi-period Jabr
relaxation. This is different from the technique used in [77] where a multiob-
jective SOCP relaxation is used to obtain an AC feasible solution. In [2] a
Benders decomposition algorithm is used for AC-constrained UC – the sub-
problem is a multi-period ACOPF on a small network. Note that all of the
previously mentioned references on convex relaxations of some multi-period
ACOPF variant are used for AC feasibility.

Two general purpose nonlinear solvers which can be used to find solutions
for single and multi-period ACOPF are Knitro [23] and IPOPT [72].

4 Convex Relaxations and Power Losses

4.1 Jabr relaxation

A well-known convex relaxation of ACOPF is the Jabr relaxation [46]. It lin-
earizes the power flow definitions (1d)-(1g) using |B|+2|E| additional variables
and adds |E| rotated-cone inequalities. A simple derivation is as follows: For
any line {k,m} ∈ E , we define

v
(2)
k := |Vk|2, ckm := |Vk||Vm| cos(θk − θm), skm := |Vk||Vm| sin(θk − θm). (3)

Clearly we have the following valid non-convex quadratic relation

c2km + s2km = v
(2)
k v(2)m , (4)

which in Jabr [46] is relaxed into the (convex) inequality

c2km + s2km ≤ v
(2)
k v(2)m . (5)

This is a rotated-cone inequality hence it can be represented as a second-
order cone constraint. Note that (3) can be used to represent the power flow
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equations in (1d)-(1g) as, ∀{k,m} ∈ E ,

Pkm = Gkkv
(2)
k +Gkmckm +Bkmskm (6a)

Pmk = Gmmv(2)m +Gmkckm −Bmkskm (6b)

Qkm = −Bkkv
(2)
k +Bkmckm −Gkmskm (6c)

Qmk = −Bmmv(2)m +Bmkckm +Gmkskm. (6d)

In summary, the Jabr relaxation can be obtained from the formulation (1) by:

(i) adding the ckm, skm, v
(2)
k variables; (ii) replacing (1d)-(1e) with (6); and

(iii) adding the constraints (5).4

4.2 An alternative SOCP

Recall that complex power injected into branch {k,m} ∈ E at bus k ∈ B is
defined by Skm := VkI

∗
km, hence

|Skm|2 = |Vk|2|Ikm|2 (7)

holds. Moreover, since complex power can be decomposed into active and

reactive power as Skm = Pkm + jQkm, and recalling that v
(2)
k := |Vk|2 while

denoting i
(2)
km := |Ikm|2, we have

P 2
km +Q2

km = v
(2)
k i

(2)
km. (8)

By relaxing the equality (8) we obtain the i2 rotated-cone inequality [31,34]

P 2
km +Q2

km ≤ v
(2)
k i

(2)
km. (9)

Since the variable i
(2)
km can be defined by

i
(2)
km = αkmv

(2)
k + βkmv(2)m + γkmckm + ζkmskm (10)

for appropriate constants αkm, βkm, γkm and ζkm (Appendix B), we obtain an
alternative SOC relaxation. This formulation, which we call the i2 relaxation,

is comprised by (1a)-(1c), (1h)-(1k), the definition of i
(2)
km (10), and the rotated-

cone inequalities (9).
It is known [68,31,29] that for each branch {k,m} the system defined by

the linearized power flows (6) plus the Jabr inequality (5), and the system
defined by the linearized power flows (6), the rotated-cone inequality (9) and

the linear definition of i
(2)
km (29), are equivalent. It is to be noted that by this we

mean that for each feasible solution to one system there is a feasible solution to
the other one. However, equivalence may fail to hold if i(2) is upper bounded.

4 We stress that (3) is not added.
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Proposition 1 The Jabr and the i2 relaxations are equivalent if the i(2) vari-
ables are not upper bounded, and otherwise the i2 relaxation can be strictly
stronger.

Proof Sufficiency was proven in [31]. For an example where the i2 relaxation
is strictly stronger than the Jabr relaxation see Appendix A.

Our computational experiments corroborate this fact; we have found that
linear outer-approximation cuts for the rotated-cone inequalities (5) and (9)
have significantly different impact in lower bounding ACOPF (Section 7).

4.3 Losses

Transmission line losses are a structural feature of power systems [11]. It is a
physical phenomenon in which the (complex) power sent from bus k to bus
m along branch km will not necessarily be equal to the power received at bus
m. This feature of power grids is captured (in steady state) by the power flow
equations (1d)-(1g). Indeed, active-power loss on line {k,m} can be defined as
the quantity

ℓkm := Pkm + Pmk. (11)

First, we will focus on active-power losses. It is well-known (see, e.g., [34,
15]) that for a simple transmission line, i.e., a non-transformer branch without
shunts, active-power loss equals

ℓkm = gkm|Vk − Vm|2 (12)

where gkm denotes line conductance (for simple lines we have Gkk = Gmm =:
gkm). Thus, if gkm ≥ 0 (i.e., the standard case [11,75]), the linear inequality
Pkm + Pmk ≥ 0 is valid for ACOPF. This inequality still holds under (tradi-
tional) branch shunts and transformers provided that gkm ≥ 0. In an arbitrary
relaxation to ACOPF we might have ℓkm < 0, and, as we demonstrate below;
this feature will make the relaxation weak. Moreover, critically, Proposition 2
below shows that the Jabr inequalities imply nonnegative active power losses
as outer-envelope inequalities.

Additionally, the following theorem in [13] sheds light on the relationship
between active-power losses and (global) active power balance. Consider an
ACOPF instance on an undirected network N = (B, E). Let us subdivide each
branch {k,m} by introducing a new node, denoted nkm. To properly place this
result, we consider a solution to any relaxation for ACOPF. Any relaxation
is of interest (even an exact relaxation) so long as variables Pkm and Pmk are
present, and active power flow balance constraints (1b) are given (or implied).
Now, given a feasible solution to the relaxation we assign real flow values to the
edges of the subdivided network, and orient those edges, as follows. Consider
an arbitrary branch {k,m}.
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(1) If Pkm ≥ 0 the edge between k and nkm is oriented from k to nkm and
assigned flow Pkm. If Pkm < 0 the edge between k and nkm is oriented
from nkm to k and assigned flow −Pkm.

(2) Similarly, if Pmk ≥ 0 the edge between m and nkm is oriented from m to
nkm and assigned flow Pmk. If Pmk < 0 the edge between m and nkm is
oriented from nkm to m and assigned flow −Pmk.

Thus, each edge in the subdivided network is oriented in the direction of the
flow value that was assigned. Using the well-known network flow-decomposition
theorem [1] yields that the flows in the subdivided network can be decomposed
into a sum of flow-carrying paths, i.e., directed paths where

– Each path starts from a source (a bus with positive net generation or a node
on a branch with negative loss) and ends at a sink (a bus with negative
net generation or a node on a branch with positive loss),

– Each path carries a fixed positive flow amount.

In summary,

Theorem 1 (Theorem 1.2.11 [13]) Consider any relaxation to an ACOPF
instance that includes, or implies, active power flow balance constraints (1b).
Then

(a) The sum of active-power generation minus negative active power losses
amounts equals the sum of active-power loads plus positive active-power
losses. Furthermore, there exists a family of flow-carrying paths that ac-
counts for all the flows in the subdivided network.

(b) There is a similar statement regarding reactive power flows (paraphrased
here for brevity). The sum of reactive-power generation amounts plus the
sum of reactive-power generated by line shunt elements, equals the sum of
reactive-power loads and losses. Furthermore, there exist a family of paths
that account for all reactive-power generation, loads, and losses. Each path
has as origin a generator (with positive reactive-power generation) or a
shunt element, and as destination a bus with a positive reactive-power load
or a line loss. If all shunt susceptances are zero, then each path has a bus
with positive reactive-power generation as origin.

The relevance of (a) is that when negative losses are present, then total gener-
ation may be smaller than total loads – effectively, the negative losses amount
to a source of free generation and directly contribute to a lower objective value
for ACOPF than AC feasible. While this point is also made in [31] regarding a
particular relaxation, the above theorem provides a clear explanation for this
fact that applies to any relaxation.

As an experiment, suppose we remove, from the Jabr relaxation, just one of
the SOC constraints, say for branch {k̂, m̂}, thus obtaining a weaker relaxation;
and suppose that, furthermore, the branch limits Ukm are large (the usual

case). Then, as we substantiate next, it is quite likely that the loss on {k̂, m̂}
will be negative in the weakened relaxation and the value of the relaxation will
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be (much) weaker – precisely because that phenomenon would allow a solution
with less generation, and thus, lower cost, than otherwise possible.

Table 1 provides empirical verification; it reports on 100 experiments in
which exactly one Jabr constraint is removed from the formulation. “Avg
Loss” represents the average loss across all branches; “Avg (br)” and ”Min
(br)” are the average and minimum (resp.) loss at the branch whose SOC
constraint was bypassed; and “Jabr” denotes the value of the Jabr relaxation,
while “weak Jabr” is the average value of the 100 weakened Jabr SOCs. For
reference, “AC-L” represents the total loss of an AC locally optimal solution,
while “SOC-L” is the total loss of an optimal solution to the Jabr SOC.

Table 1: Average and minimum losses 100 repetitions of removing a randomly selected SOC
constraint.

Case Avg Loss Avg (br) Min (br) Jabr weak Jabr AC-L SOC-L

case14 -0.3808 -0.4906 -1.7443 8075.12 6292.78 0.0929 0.0918
case118 0.1084 -0.7046 -5.1803 129340.00 126982.72 0.7740 0.7125
case300 1.8485 -1.1652 -6.1421 718654.00 714858.26 3.0274 2.8064

In Table 2 we provide additional evidence in the same direction. We report
on 100 experiments, for larger cases, where we remove 100 Jabr constraints
randomly selected using the uniform distribution. To highlight the relative
orders of magnitude of the losses, we exhibit the total load for each case. The
column “Sample” is an average over all the samples of the 100 repetitions.

Table 2: Average and minimum losses 100 repetitions of removing 100 randomly selected
SOC constraints.

Weak Jabr Jabr AC

Avg Losses Min Losses

Case Load Total Sample Sample Objective Objective Losses Losses

1354pegase 730.60 -150.38 -379.60 -764.52 58021.55 74008.58 9.49 10.09
2869pegase 1324.37 -197.83 -402.59 -1119.85 112663.19 133872.69 14.24 15.51
3375wp 483.63 -65.50 -117.11 -343.72 6467352.82 7385372.70 6.90 8.30

The following example sheds light on the importance of imposing the non-
negative active-power loss requirement.

Remark 1 Solving the McCormick relaxation of the rectangular QCQP for-
mulation [60] of case3 from MATPOWER, we obtain an optimal solution with
zero active-power generation. In particular5, the active-power losses are

ℓ12 = 0.0789, ℓ13 = −1.1941, ℓ23 = 0.0331,

5 Since total active-power demand is 1.00 and there is a bus shunt at bus 2 with shunt
conductance 0.1, and the magnitude of voltage at bus 2 squared is 0.8211 in our solution,
we have that generation equals losses plus the sum of the loads.
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i.e., total active-power losses equals −1.0821.

0 ≤ P g
1 ≤ 2

P d
2 = 0.5

P d
3 = 0.5

r = 0.05, x = 0.1 r = 0.01, x = 0.1

r = 0.08, x = 0.8

Fig. 2: Circuit representation of case3 from MATPOWER.

Given that we obtain active power loss as a linear combination of the power
flow equations it is natural to wonder if the SOC relaxations to ACOPF (or
outer approximations thereof) accurately approximate active-power losses. In
Table 3 we provide empirical evidence that the quality of the approximations
to total losses provided by the SOC relaxations is still very weak – even though
the objective lower bounds proved by the SOC relaxations are quite close to
ACOPF primal bounds.

Table 3: Active-power losses and optimality gaps.

AC Jabr SOC

Case Objective Losses Objective Losses Opt Gap Loss Gap

1354pegase 74069.35 10.09 74008.58 9.48 0.08% 6.04%
ACTIVSg10k 2485898.75 23.01 2466666.10 13.88 0.77% 39.68%
ACTIVSg70k 16439499.83 156.83 16217263.66 121.31 1.35% 22.65%

It must be noted, however, that from a theoretical perspective the existence
of active-power losses is not what makes ACOPF intractable; the NP-hardness
proof in [71,18] relies on a lossless system.

4.4 Losses and cutting-planes

Next we provide theoretical justification for using an outer-approximation
cutting-plane framework on the Jabr and i2 relaxations. We show that for
transmission lines with Gkk > 0 > Gkm = Gmk ≥ −Gkk and Bkm = Bmk,
in particular lines with no transformer or shunt elements, active-power loss
inequalities are implied by the Jabr inequalities, and also by the definition of
the i(2) variable. We begin with two simple technical observations.

First, consider a (generic) rotated cone inequality

x2 + y2 ≤ wz (13)
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where x, y ∈ R and w, z ∈ R+. Then

x2 + y2 ≤ wz ⇐⇒ (2x)2 + (2y)2 ≤ (w + z)2 − (w − z)2 (14a)

⇐⇒ ||(2x, 2y, w − z)⊤||2 ≤ w + z. (14b)

Next, let λ ∈ R3 satisfy ||λ||2 = 1. Then, by (14b),

2λ1x+ 2λ2y + λ3(w − z) ≤ ||λ||2 ||(2x, 2y, w − z)⊤||2 ≤ w + z. (15)

Inequality (15) provides a generic recipe to obtain outer-envelope inequalities
for the rotated cone (13). As a result of these developments, we have:

Proposition 2 For a transmission line {k,m} ∈ E with Gkk > 0 > Gkm =

Gmk ≥ −Gkk and Bkm = Bmk, the Jabr inequality c2km + s2km ≤ v
(2)
k v

(2)
m

implies, as an outer envelope approximation inequality, that ℓkm ≥ 0.

Proof See Appendix C.

Moreover, for simple transmission lines the definition of the variable i(2)

implies the active-power loss inequalities [68,28]. Actually, if a line {k,m} has

no shunts, then it is folklore (and follows from basic physics) that i
(2)
km ≥ 0

implies ℓkm ≥ 0.

Proposition 3 For any line transmission line {k,m} ∈ E with yshkm = 0, the

definition of the variable i
(2)
km implies the active-power loss inequality associated

with that line.

Proof See Appendix D.

4.5 A numerically better-behaved i2 relaxation

The i2 relaxation is at least as strong as the Jabr relaxation, and in congested
networks it can be strictly stronger (Proposition 1). Thus, the i2 relaxation
is a natural candidate for outer-approximation via a cutting-plane framework
(Section 5); we numerically verify the strength of a linear outer-approximation
of the i2 relaxation in Section 7.1.1. The strength of this relaxation comes at a
price: numerical instability. To be precise, the potentially large coefficients in
the definition of the i(2) variables can result in a ill-conditioned SOC instance
(see, e.g., [49]). Next we illustrate this issue with a simple case to show how
the Jabr outer-envelope inequalities complement the strength of the i(2) defi-
nitions. We conclude this subsection with a new, numerically stable modified
i2 relaxation, which we term i2+(ρ), where ρ > 0.

Let {k,m} be a transmission line with a limit Ukm < +∞, and without
any transformers or shunt elements. By (29) we have

i
(2)
km =

(
1

r2km + x2
km

)(
v
(2)
k + v(2)m − 2ckm

)
(16)
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where rkm and xkm denote the line’s resistance and reactance. Moreover, equa-

tion (7) implies that i
(2)
km can be upper-bounded by the constant Hkm :=

Ukm/(V min
k )2, where V min

k corresponds to the lower limit for voltage magnitude
at bus k (both voltage limits are close to 1 under standard data conditions).

Suppose that this simple line {k,m} has small resistance, e.g., on the order
of 10−5. Then 1/(r2km + x2

km) can be on the order of 108. In addition, assume
that the limit Ukm is small. Thus, (r2km +x2

km)Hkm can be fairly small, which
yields

v
(2)
k + v(2)m − 2ckm ≤ (r2km + x2

km)Hkm ≈ 0. (17)

Since v
(2)
k +v

(2)
m −2ckm ≥ 0 is a Jabr outer-envelope cut (proof of Proposition 2),

inequality (17) is forcing our solutions to lie near the surface of the rotated-

cone c2km + s2km ≤ v
(2)
k v

(2)
m , i.e., it is cutting-off solutions which are in the

interior of the Jabr cone for line {k,m}. Notice that the more capacitated the
transmission line is, the stronger the effect of the i(2) variables (Figure 3).

This key observation motivates a numerically more stable relaxation. Con-

sider the definition of i
(2)
km in Appendix B for appropriate constants αkm, βkm, γkm

and ζkm:

i
(2)
km = αkmv

(2)
k + βkmv(2)m + γkmckm + ζkmskm. (18)

Let ρ > 0 be some fixed parameter, and consider the following heuristic: for
every transmission line {k,m} ∈ E ,

(i) if αkm > ρ, we say that the branch induces a bad-i2, and we define the
following inequalities (which are valid by the previous discussion)

v
(2)
k +

βkm

αkm
v(2)m +

γkm
αkm

ckm +
ζkm
αkm

skm ≥ 0, (19a)

v
(2)
k +

βkm

αkm
v(2)m +

γkm
αkm

ckm +
ζkm
αkm

skm ≤ Hkm

αkm
; (19b)

(ii) otherwise, we say that the branch induces a good-i2, and we define i
(2)
km =

αkmv
(2)
k + βkmv

(2)
m + γkmckm + ζkmskm.
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Jabr outer-approx. cut 1

Jabr outer-approx. cut 2

v
(2)
k

+v
(2)
m ≤Hkm

αkm
+2ckm

v
(2)
k

+v
(2)
m ≥2ckm

Fig. 3: The black circle represents a horizontal cross-section of a projected Jabr cone (5) onto

the (v
(2)
k , v

(2)
m , ckm)-space. The red and blue inequalities represent (19) for a simple trans-

mission line, while the teal and cyan inequalities represent two Jabr outer-approximation
cuts.

Empirically, we see in Table 4 that the coefficients of the inequalities (19)
are relatively small; clearly closer to the range of coefficients of the linear con-
straints of the Jabr SOCP, and to the coefficients6 of the Jabr outer-envelope
cuts which will be deployed in our cutting-plane algorithm (refer to the linearly
constrained relaxation M in Section 5.2.2). We observe that roughly around
90% of the branches correspond to bad-i2 s.

Table 4: Statistics of the coefficient α in (18) and of the coefficients in (19).

α β
α

γ
α

ζ
α

H
α

Case %bad-i2s Max Avg Max Avg Max Avg Max Avg Max Min Avg

ACTIVSg10k 91.33 1.00e10 1.09e06 1.47 1.01 -1.80 -2.01 0.88 0.00 18.52 2.57e-09 3.06
10000goc-sad 88.50 2.23e06 2.41e05 1.21 1.00 -1.90 -2.00 0.01 0.00 1.89 4.64e-06 0.48
30000goc-api 96.13 2.41e07 3.66e05 1.31 1.00 -1.94 -2.00 0.01 5.90e-06 1.89 2.16e-06 0.71

By making reasonable assumptions about transmission line parameters we can
derive the following upper bounds for the coefficients in inequalities (19).

Proposition 4 Let {k,m} ∈ E be a transmission line that satisfies |b| > bsh,
gsh = 0 and |b| > g. Then, the coefficients βkm

αkm
, γkm

αkm
, and ζkm

αkm
in (19) are

6 The size of coefficients of these cuts are linear in the values of variables c, s and v in any
solution to a linear relaxation of the Jabr SOCP; see Proposition 5.
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bounded by max{τ2km, 3τkm}, where τkm is the transformer tap ratio located at
bus k.7

Proof See Appendix G.

In consequence, given ρ > 0, we define our numerically better-behaved

i2+(ρ) relaxation by (1a)-(1c), (1h)-(1k), the definition of i
(2)
km (29) and the

rotated-cone inequalities (9) for every good-i2 branch {k,m}, and inequali-
ties (19) for every bad-i2 branch {k,m}. We use the i2+(ρ) relaxation for our
multi-period experiments (see discussion and results in Section 7.3).

5 Cutting-plane Framework: Cut Separation and Management

In this paper we use a dynamically generated linearly-constrained relaxation
as a lower bounding procedure for ACOPF; relying on a perspective sometimes
associated with integer programming.

Given a set X in Rn, we say that a convex inequality g(x) ≤ d is valid
for X if g(x) ≤ d holds for all x ∈ X. Given X and x /∈ X, then we say
that c⊤x ≤ d is a (linear) cut for X if the inequality is valid for X but it is
not satisfied by x. A (linear) cutting-plane algorithm [48,64] for a set X is
an iterative procedure in which, starting from an initial (linear) relaxation, in
every round (linear) cuts are added to approximate X. Typically, these cuts
are computed in iterative fashion; at each round an optimal solution x /∈ X
to the current relaxation is separated using a computed cut. We note that in
addition to Kelley’s cutting-plane algorithm [48] other related algorithms have
been proposed in the literature. See [65] for background.

In the case of single-period experiments our target setX is the i2 relaxation
of ACOPF, while we use the i2+(ρ) relaxation for the multi-period setting. The
reason is simple: the multi-period i2 relaxation for medium to large networks
is not numerically tractable.

In support of this statement, we note that direct solution of the Jabr and
i2 relaxations of ACOPF, for large instances, is computationally prohibitive
and often results in non-convergence (see tables 6, 7, 8, 9, 12, 16 and 17). Our
empirical evidence further shows that outer-approximation of the rotated-cone
inequalities (in either case) requires a large number of cuts in order to achieve
a tight relaxation value. Moreover, employing such large families of cuts yields
a relaxation that, while linearly constrained, still proves challenging – both
from the perspective of running time and numerical tractability. Nonetheless, a
characteristic feature of our iterative procedure is its robustness to potentially
suboptimal termination of the oracle used to solve the LPs or convex QPs;
independent of the quality of the primal solution obtained, our linear cuts will
always be valid.

However, as we show, adequate cut management proves successful, yielding
a procedure that is (a) rapid, (b) numerically stable, and (c) provides a very

7 If the line does not have a transformer, then τkm = 1; generally, tap ratios do not take
extreme values.
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tight relaxation (Tables 8 and 9). The critical ingredients in this procedure
are: (1) fast cut separation; (2) appropriate violated cut selection; and (3)
effective dynamic cut management, including rejection of nearly-parallel cuts
and removal of expired cuts, i.e., previously added cuts that are slack (see
Section 5.2.1).

Our procedure possesses efficient warm-starting capabilities – this is a cen-
tral goal of our work. Previously computed cuts, for some given instance, can
be re utilized and loaded into new runs of related instances, hence leverag-
ing previous computational effort. It is worth noting that this reoptimization
feature stands in sharp contrast to what is possible using nonlinear (convex)
solvers. In Section 7.2 we justify the validity of this feature and Tables 8 and 9
summarize extensive numerical evidence on its performance relative to solving
the SOCPs ‘from scratch’. We remark that adequate cut management is what
enables this capability in the case of large single and multi-period ACOPF
instances.

5.1 Two Simple Cut Procedures

The following (routine) results provide a fast procedure for separating over
the rotated-cone inequalities

c2km + s2km ≤ v
(2)
k v(2)m , P 2

km +Q2
km ≤ v

(2)
k i

(2)
km. (20)

Proposition 5 Consider the second-order cone C := {(x, s) ∈ Rn × R+ :
||x||2 ≤ s}. Suppose (x′, s′) /∈ C with s′ ≥ 0. Then the projection of (x′, s′)
onto C is given by

x0 := s0
x′

||x′|| , s0 :=
||x′||+ s′

2
.

Moreover, the hyperplane which achieves the maximum distance from (x′, s′)
to any hyperplane separating C and (x′, s′) is given by

(x′)tx ≤ s||x′||.

Proof See Appendix E.

Corollary 1 Let C := {(x, y, w, z) ∈ R2×R2
+ : x2+y2 ≤ wz} ⊆ R4 and sup-

pose that (x′, y′, w′, z′) /∈ C where w′+ z′ > 0. Then the hyperplane separating
C from (x′, y′, w′, z′) and at maximum distance from this point is given by

(4x′)x+ (4y′)y + ((w′ − z′)− n0)w + (−(w′ − z′)− n0)z ≤ 0, (21)

where n0 := ||(2x′, 2y′, w′ − z′)⊤||2.

Proof Rewriting the rotated-cone inequality as (14b) and a direct application
of Proposition 5 gives us the desired separating hyperplane.
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The following proposition gives us a simple procedure for computing linear
cuts for violated limit inequalities

P 2
km +Q2

km ≤ Ukm. (22)

Proposition 6 Consider the Euclidean ball in R2 of radius r, Sr := {(x, y) ∈
R2 : x2 + y2 ≤ r2}, and let (x′, y′) /∈ Sr. Then the separating hyperplane that
is at maximum distance from (x′, y′) is given by

(x′)x+ (y′)y ≤ r||(x′, y′)||2. (23)

Proof See Appendix F.

5.2 Basic Cutting-Plane Algorithm

5.2.1 Single-period

In what follows we describe our cutting-plane algorithm for the single-period
setting. First, we define a linearly constrained base model M0 as follows:

[M0] : min
∑
k∈G

Fk(P
g
k ) (24a)

subject to:

constraints (1b), (1c), (6), (1h)− (1i), (1j) (24b)

In other words, we consider the linearized power flow equations of the Jabr
SOCP and all the linear constraints in (1). Recall that for single-period ACOPF,
our target set X is the i2 relaxation.

In every round of our iterative procedure, linear constraints will be added
to and removed from the current relaxation, which is initialized as M0. We
will denote by M the relaxation at a generic iteration of our cutting-plane
algorithm.

Given a feasible solution x̄ to M , and letting fkm(x) ≤ 0 be some valid
convex inequality (20) or (22), our measure of cut-quality is max{fkm(x), 0},
i.e., the amount by which x violates the inequality. Let ϵ > 0. For each type τ ∈
{Jabr, i2, limit} of inequality we select the top pτ percent –a fixed parameter–
most highly violated inequalities of type τ whose violation is greater than ϵ –
these are the τ -candidates (Line 7 of the pseudocode).

For each list of τ -candidates, we compute cuts for the corresponding branches
using the cut procedures described in Section 5.1. Candidate cuts will be re-
jected if they are nearly parallel to incumbent cuts in M – near-linear depen-
dency is a common source of ill-conditioning in optimization models [43,49].
To be precise, given ϵpar > 0, we say that two linear inequalities ctx ≤ 0 and
dtx ≤ 0 are ϵpar-parallel if the cosine of the angle between their normal vectors
c and d is strictly more that 1− ϵpar.

Finally, we describe a heuristic for cleaning-up our formulation. For each
added cut, we keep track of its cut-age, i.e., the count of rounds since it was
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added. Then, in every iteration, if a cut c⊤x ≤ d has age greater or equal
than a fixed parameter Tage ∈ N, and it is ϵ-slack, i.e., d− c⊤x > ϵ, then it is
dropped from M .

Algorithm 1 Cutting-Plane Algorithm

1: procedure Cutplane
2: Initialize r ← 0, M ←M0, z0 ← +∞
3: while t < T and r < Tftol do
4: z ← minM and x̄← argminM
5: Check for violated inequalities by solution x.
6: Sort inequalities by violation.
7: Compute cuts for the most violated inequalities.
8: Add computed cuts if they are not ϵ-parallel to existing cuts in M .
9: Drop cuts of age ≥ Tage whose slack is ≥ ϵj .
10: if z − z0 < z0 · ϵftol then
11: r ← r + 1
12: else
13: r ← 0
14: end if
15: z0 ← z
16: end while
17: end procedure

In addition to M0 and the parameters pτ , ϵ, ϵpar, Tage, other inputs for our
procedure are: a time limit T > 0; the number of admissible iterations with-
out sufficient objective improvement Tftol ∈ N; and a threshold for objective
relative improvement ϵftol > 0.

5.2.2 Multi-period

We outer-approximate the i2+ relaxation in the multi-period setting. Thus,
the linearly constrained base model MT

0 is given by

[MT
0 ] : min

T−1∑
t=0

∑
k∈G

Fk(P
g
k,t) (25a)

subject to:

constraints (1b), (1c), (6), (1h)− (1i), (1j) (25b)

for every good-i2 branch {k,m}, (29), (9) (25c)

for every bad-i2 branch {k,m}, (19). (25d)

In other words, we consider all the linear constraints of our i2+ relaxation.

For each time-period t, we sort violated inequalities τ ∈ {Jabr, i2, limit} by
violation, as in the single-period setting, and pick as (τ, t)-candidates branches
the top pτ percentage of the most violated branches per period t. The rest
follows as in Algorithm 1.
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Our experiments show that our cut selection is robust, and that Gurobi
version 10.0.1 [41] is able to handle surprisingly well large volume of cuts, see
tables 10 11, 12.

6 On the Accuracy of Lower Bounds

In this section we address an issue of fundamental importance in numerical
optimization, and which, in our opinion, has not received adequate attention
in the ACOPF literature.

Most optimization solvers, commercial and academic, work with finite pre-
cision, floating-point arithmetic (some notable exceptions are the LP solvers [4]
and [38]) and are subject to roundoff errors, usually small. To be precise, when-
ever an optimization instance is “solved” and declared “optimal” by a solver,
it is highly likely that the provided solution will have small infeasibilities, i.e.,
the solution will exhibit constraint violations up to some tolerance. Usually,
this infeasibility tolerance can be controlled by the user.

A natural question then is: given an ϵ-feasible x̃ solution to a convex op-
timization problem [P ] with optimal solution x (likely unknown by the user),
how superoptimal can the approximate solution be? In other words, are there
any general guarantees which permit us bound the superoptimality of approx-
imate solutions? For example, if f denotes the objective function for [P ], we
seek a guarantee of the form

f(x̃) ≥ f(x)− hP (ϵ)

for a certain function hP which only depends on the instance’s data. Ideally,
we would like for hP to be monotonic on ϵ and polynomial on the size (bit-
length) of the problem [P ] data. If [P ] is a linear program then hP is linear
function whose slope coefficient has bit-length polynomial on the problem’s bit
encoding [64]. Moreover, if [P ] is a convex QP we also have a good guarantee
as in the LP case. Our proof leverages an argument used to show that QP is
in NP [70].

Proposition 7 Let [P ] be a convex QP with objective given by f(x) := x⊤Hx+
c⊤x, where H ∈ Qn×n is a positive definite matrix and c ∈ Qn, and feasible
set X := {x ∈ Rn : Ax ≥ b}, where A ∈ Qm×n and b ∈ Qm. Let x ∈ Qn be
an optimal solution to this convex QP. Suppose there is a point x̃ ∈ Qn that
is ϵ-feasible for [P ]. Then,

f(x̃) ≥ f(x)− ||λ||1ϵ. (26)

where λ is an optimal solution to the dual of [P ].
Moreover, ||λ||1 can be bounded by a constant g(A, b,H, c) whose bit-length

is polynomial on the bit-complexity of the input (A, b,H, c).

Proof See Appendix I.
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Remark 2 This proposition can be readily applied to the dual of the convex
QP which is again a convex QP (the quadratic term in the objective is negative
definite). Indeed, if we denote by q the dual objective and by λ̃ an ϵ-feasible
dual solution, we can apply our result to the convex QP with objective q′ := −q
which yields

q′(λ̃) ≥ q′(λ)− ||x||1ϵ ⇐⇒ q(λ̃) ≤ q(λ) + ||x||1ϵ.

Next, we elaborate on the relevance of Proposition 7. Suppose we are given:

– A (not necessarily convex) optimization problem [Z] whose optimal objec-
tive value is denoted by z;

– A convex relaxation [P ] of [Z], with objective function f , and its dual [D],
with objective function q;

– An ϵ-feasible primal-dual pair (x̃, λ̃) and an optimal primal-dual pair (x, λ)
for [P ]-[D].

Assume that strong duality holds8 for the pair of convex problems [P ]-[D].
Figure 4 depicts two inherent risks when dealing with ϵ-feasible solutions:
incurring in (1) invalid lower bounds, and (2) poor primal bounds for [Z].
Indeed, (1) an infeasible (even if ϵ-feasible) dual solution could provide an
invalid lower bound for [Z], i.e., z < q(λ̃). On the other hand, (2) if a primal
ϵ-solution x̃ to the relaxation [P ] is used as an approximate or even an exact
solution9 to [Z] and we do not have guarantees such as those provided by
Proposition 7, then the value f(x̃) may be significantly off (far from z).

f(x) = q(λ) z

Dual superoptimality (for [D])

Invalid lower boundInvalid upper bound

Primal superoptimality (for [P ])

f(x̃) q(λ̃)

Fig. 4: Validity of bounds and superoptimality of ϵ-feasible solutions.

Results such as inequality (26) are appealing since the bound has a linear
dependence on ϵ. Unfortunately, small dual violations are not the only ingre-
dient for accurate bounds; problem structure is key. In Appendix J we show
that if [P ] and [D] are a primal-dual pair of SOCPs for which strong duality
holds, then any ϵ-feasible solution x̃ satisfies c⊤x̃ ≥ c⊤x − (||λ||1 + ||u||1)ϵ
where c denotes the primal objective and (x, (λ, u)) a primal-dual optimal
pair. Thus, a natural question is: can we always provide a ’reasonable’ bound
on ||λ||1 + ||u||1? From a fundamental perspective, such a bound should be

8 An analogous analysis can be done is there exists a duality gap; we assumed strong
duality for clarity of explanation.

9 For instance, for radial networks the Jabr SOCP relaxation is exact.
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polynomial on the bit-length of the problem data – as in the case for LPs or
convex QPs10. In what follows we provide a partially negative answer to the
latter question even for the case of the Jabr SOCP for the simplest possible
network – two buses and one transmission line.

Proposition 8 There exists an ACOPF instance on a two-bus network with
standard line parameters and rational data, where the only two AC feasible
solutions are irrational. Additionally, the unique minimizer of the Jabr SOCP
in this instance is also irrational. Furthermore, the dual problem to this Jabr
SOCP has a unique maximizer, which is irrational as well.

Proof See Appendix H.

Remark 3 This is an example of an ACOPF instance (in the simplest possible
non-trivial setting) whose feasible region is disconnected while its convex hull
is described by the feasible region of the Jabr SOCP (since the network is
radial [46]). Also see the classical example in [44]. Moreover, this example
shows that to answer whether AC-Feasibility [53,18] is in NP or not one cannot
rely on an AC rational feasible solution as a polynomial-size certificate.

In summary, LP and convex QP relaxations possess robust theoretical guar-
antees for bounding challenging optimization problems, in sharp contrast to
what nonlinear relaxations such as SOCPs can offer. Given that this paper
focuses on lower bounds for ACOPF, we are particularly interested in dual
infeasibility of primal-dual solutions provided by the solvers (the primal being
a convex relaxation of ACOPF). In Section 7.3 we report on dual infeasibilities
attained by solvers run on our linearly constrained models.

7 Computational Experiments

We ran all of our experiments on an Intel(R) Xeon(R) 64-bit Linux machine,
with 2 E5-2687W v3 3.10GHz CPUs, 20 physical cores, 40 logical proces-
sors, and 256 GB RAM. We used three commercial solvers: Gurobi version
10.0.1 [41], Artelys Knitro versions 13.2.0 and 14.1.0 beta [23], and Mosek
10.0.43 [5]. As a common interface for all SOCP and ACOPF models we used
AMPL [37] via Python. We note that unlike Gurobi and Knitro, Mosek does
not accept a constraint of the form x2 + y2 ≤ z2 or x2 + y2 ≤ wz as a conic
constraint; thus we reformulated the SOCPs using a format that Mosek-AMPL
was able to read.

We report extensive numerical experiments on instances from the following
data sets: medium and large-sized standard IEEE instances available from
MATPOWER [75], the Pan European Grid Advanced Simulation and State
Estimation (PEGASE) project [47] [36], ACTIVSg synthetic cases developed
as part of the US ARPA-E GRID DATA research project [20], [21], and the

10 The existence of SOCPs whose unique solution is irrational are folklore results, see [17]
for examples.
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largest instances from the Power Grid Library for Benchmarking AC Optimal
Power Flow Algorithms [6] (PGLIB). Our main focus are cases with 9000 buses
or more.

Our cutting-plane algorithm is implemented in Python 3 and uses Gurobi
10.0.1 to solve LPs and convex QPs. All of our reported single-period exper-
iments were obtained with the following parameter setup (Section 5.2): bar-
rier convergence tolerance and absolute feasibility and optimality tolerances
equal to 10−6, ϵ = 10−5, pJabr = 0.55, pi2 = 0.15, plimit = 1, Tage = 5,
ϵpar = 10−5/2, ϵftol = 10−5, and Tftol = 5. For our multi-period experiments
we used the numerically better-behaved i2+(ρ) relaxation with ρ = 102, and,
as a result, we were able to increase solution accuracy: we set absolute feasi-
bility and optimality tolerances equal to 10−8, and we relaxed Tftol from 5 to
3 for T = 12 and to 2 for T = 24. All of our code, AMPL model files, and
solution files can be downloaded from www.github.com/matias-vm.

Next we describe the symbols used in our tables. The character “ − ”
denotes that the solver did not converge, while “TLim” means that the solver
did not converge within our time limit. By convergence we mean that the solver
declares to have obtained an optimal solution, within the previously defined
tolerances. Further, “INF” means that the instance was declared infeasible
by the solver, while “LOC INF”, used by KNITRO, means that the solver
converged to an infeasible point. Moreover, if Gurobi declares numerical trouble
while solving our LPs or convex QPs at some iteration of our cutting-plane
algorithm, we report the objective value of the previous iteration followed by
the character “ ∗ ”. The objective values and running times are reported with
2 decimal places.

We remark that, to the best of our knowledge, this is the first computational
study which compares the performance of three leading commercial solvers
on the Jabr SOCP using a common framework (AMPL). We evaluate the
solvers on the Jabr SOCP, and compare their performance with that of our
warm-started i2+ formulations. For the solvers we use Jabr instead of the
i2 SOCP because the former is numerically better behaved from the solvers’
perspective (Section 4.5). We report on these numerical issues in Section 7.1.2;
also compare tables 11 and 12.

7.1 Single-Period Experiments

SOCPs: Solver parameters We set a time limit of 1, 000 seconds for all of our
SOCP experiments11. Next we describe additional parameter specifications for
each solver.

– We use Gurobi’s default homogeneous self-dual embedding interior-point
algorithm (barrier method without Crossover, and Bar Homogeneous set to
1), and we set the parameter Numeric Focus equal to 1. Barrier convergence
tolerance and absolute feasibility and optimality tolerances were set to
10−6. Gurobi was allowed 20 threads.

11 One iteration of our algorithm requires approximately 60− 100 seconds.

www.github.com/matias-vm
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– We use Knitro’s default Interior-Point/Barrier Direct Algorithm, with ab-
solute feasibility and optimality tolerances equal to 10−6. We used the HSL
MA57 sparse symmetric indefinite linear solver, and the Intel Math Kernel
Library (MKL) functions for Basic Linear Algebra Subroutines (BLAS),
i.e., for basic vector and matrix computations. Moreover, 20 threads were
used with Knitro. SOCPs were explicitly input to Knitro as convex prob-
lems. When computing primal bounds, we employed the linear solver HSL
MA97 whenever Knitro under MA57 was not converging.

– We use Mosek’s default homogeneous and self-dual interior-point algorithm
for conic optimization. We set the relative termination tolerance, as well
as primal and dual feasibility tolerances to 10−6. We used 20 threads with
Mosek.

Remark 4 We did not set a time limit for computing single-period ACOPF
primal bounds.

7.1.1 Cut Computations

Table 5 summarizes outcomes on cut computations for a substantial number
of instances from the libraries described above. Under “Cutting-Plane,” “Ob-
jective” reports the objective of the last iteration of our algorithm, “Time”
reports the total running time (in seconds) of our method; “Computed” re-
ports the number of cuts computed throughout the entire procedure; “Added”
exhibits the total number of cuts in our linearly constrained relaxation at the
last round; and “Rnd” is the number of rounds or our algorithm. Finally, “Pri-
mal bound” reports the objective value of a feasible solution to ACOPF and
the amount of time (in seconds) required by Knitro for this purpose.

Overall, our cut management heuristics yield very tight linearly constrained
relaxations using a relatively small number of cuts - note that we could poten-
tially add 3|E| cuts per round (for each branch {k,m} there are three inequal-
ities (20) and (22) that might be violated). For instance, case ACTIVSg70k
has 88207 branches and after 10 rounds of cuts we only keep 123431 out of the
350572 linear cuts computed throughout the course of our algorithm. Thus,
fewer than 1.5 linear cuts per branch give us a relaxation with optimality gap12

at most 0.69%.
We remark that for some instances the objective value of our procedure

can be higher than the objective value of the Jabr SOCP since our algorithm
is outer-approximating the feasible region of the i2 SOCP (Proposition 1).

We also note that 30000goc-sad was the only instance for which Gurobi
experienced numerical difficulties while solving the linearly constrained relax-
ation (indicated by the character “∗” next to the objective value). In this case
the reported objective value corresponds to the previous iteration – setting a

12 Given a primal bound of a minimization problem, we define the optimality gap of a

relaxation of the given problem as
zp−zr

zp
, where zp denotes the objective value of the

primal bound and zr denotes the objective value of the relaxation.
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Table 5: Performance of Cutting-Plane Algorithm (Not Warm-Started)

Cutting-Plane Algorithm Primal bound

Case Objective Time Computed Added Rounds Objective Time

9241pegase 309221.81 378.82 135599 29875 23 315911.56 96.74
9241pegase-api 6924650.57 277.32 128316 30230 21 7068721.98 73.85
9241pegase-sad 6141202.28 386.51 113686 27273 21 6318468.57 33.92
9591goc-api 1346373.10 187.26 87812 22469 22 1570263.74 42.85
9591goc-sad 1055493.25 246.87 90153 20514 27 1167400.79 28.15
ACTIVSg10k 2476851.62 132.16 60803 18183 19 2485898.75 76.71
10000goc-api 2502026.03 147.12 73084 19666 24 2678659.51 23.46
10000goc-sad 1387303.02 114.97 58984 18528 17 1490209.66 103.06
10192epigrids-api 1849488.30 152.87 97921 24882 22 1977687.11 117.15
10192epigrids-sad 1672819.53 185.02 95740 23726 23 1720194.13 23.74
10480goc-api 2708819.18 200.48 114967 29805 21 2863484.4 38.71
10480goc-sad 2287314.69 270.38 118122 28004 24 2314712.14 27.93
13659pegase 379084.55 841.83 176962 37297 22 386108.81 1184.15
13659pegase-api 9270988.77 326.57 147479 34390 19 9385711.45 44.43
13659pegase-sad 8868216.24 301.87 130682 32662 19 9042198.49 42.08
19402goc-api 2448812.41 440.67 213564 52388 22 2583627.35 87.33
19402goc-sad 1954047.79 488.33 218291 49749 25 1983807.59 64.01
20758epigrids-api 3042956.88 464.17 189436 46124 25 3126508.30 61.39
20758epigrids-sad 2612551.03 379.36 180790 44624 24 2638200.23 58.11
24464goc-api 2560407.12 471.14 226595 57162 22 2683961.9 533.03
24464goc-sad 2605128.51 506.39 222908 55242 23 2653957.66 73.87
ACTIVSg25k 5993266.85 592.39 156285 43851 28 6017830.61 56.69
30000goc-api 1531110.84 464.16 142385 41840 24 1777930.63 134.71
30000goc-sad 1130733.51* 147.74 76546 76546 6 1317280.55 565.05
ACTIVSg70k 16326225.66 1065.76 350572 123431 13 16439499.83 240.55
78484epigrids-api 15877674.54 1007.99 556893 240576 10 16140427.68 1079.03
78484epigrids-sad 15175077.19 1062.55 501202 313587 8 15315885.86 343.45

more aggressive cut management heuristic, for instance decreasing Tage from
5 to 4, gave us numerically more stable cuts and a better bound.

Finally, we obtained our primal bounds by running Knitro with a flat-start,
i.e., we provided as initial point voltage magnitudes set to 1 and all θkm = 0.

7.1.2 Performance on SOCPs

In Table 6, we observe that for the cases in which at least two solvers converge,
the reported bounds for the Jabr SOCP agree on the first 2 to 3 most significant
digits. These differences in bounds reflect how numerically challenging the
given instances are. We remind the readers of the parameter choices that we
made in order for the solvers to achieve termination – the solvers otherwise
would often fail.

As we mentioned at the beginning of this section, the i2 SOCP is nu-
merically even more challenging for the solvers than the Jabr SOCP. Indeed,
in Table 7 we can see that the solvers do struggle (see also Table 12). We
studied in detail some cases where Gurobi AMPL declared optimality –for
example case ACTIVSg70k– while reporting variable bound max scaled vi-
olation equal to 8.43 as well as large primal and dual residuals (0.0128 and



28 Daniel Bienstock, Mat́ıas Villagra

Table 6: Solvers’ Performance on Jabr SOCP

Objective Time

Case Gurobi Knitro Mosek Gurobi Knitro Mosek

9241pegase - 309234.16 - 82.11 34.68 31.11
9241pegase-api - 6840612.84 - 116.32 23.39 72.29
9241pegase-sad - 6083747.85 - 111.05 26.01 75.99
9591goc-api 1346480.71 1348107.89 1345869.72 38.25 23.74 36.60
9591goc-sad 1055698.54 1058606.56 1054379.58 49.29 32.83 37.61
ACTIVSg10k - 2468172.93 2466666.10 40.18 21.48 26.08
10000goc-api - 2507034.94 2498948.00 48.63 35.19 30.13
10000goc-sad 1387288.49 1388679.63 1386041.07 23.58 26.27 23.68
10192epigrids-api - 1849684.14 1848873.47 75.82 42.69 29.09
10192epigrids-sad - 1672989.96 1672534.72 83.85 28.33 28.63
10480goc-api - 2708973.58 2707828.26 75.94 27.21 56.82
10480goc-sad - 2286454.3 2285547.23 149.93 38.17 59.48
13659pegase 379135.73 379144.11 - 33.61 43.26 34.92
13659pegase-api - 9198542.14 - 162.21 30.64 105.11
13659pegase-sad 8826902.31 8826958.23 8787429.86 83.75 31.84 108.74
19402goc-api - 2449020.25 2447799.72 158.12 152.89 103.04
19402goc-sad - 1954331.70 1952550.06 203.56 155.89 104.88
20758epigrids-api - - 3040421.02 143.99 TLim 93.46
20758epigrids-sad - - 2610196.94 98.30 TLim 75.88
24464goc-api 2548335.96 - 2558631.63 603.95 TLim 129.90
24464goc-sad - - 2603525.46 333.50 TLim 128.50
ACTIVSg25k 5956787.54 5964417.54 5955368.56 169.66 87.14 87.18
30000goc-api - 1531256.65 1529197.81 207.60 118.80 123.38
30000goc-sad - - 1130868.71 191.22 TLim 84.90
ACTIVSg70k - 16221577.73 16217263.66 553.26 320.98 232.47
78484epigrids-api - - - 756.00 TLim 637.48
78484epigrids-sad 15180775.21 - 15169401.54 463.17 TLim 601.04

3.25, respectively). Moreover, we noticed inconsistent termination status for
cases 10192epigrids-sad, 10480goc-api, 20758epigrids-sad, and 30000goc-sad on
Gurobi and Gurobi through AMPL (Gurobi-AMPL) using the same model;
Gurobi AMPL declares optimal termination for these instances while Gurobi
does not. Cases for which we were able to identify low quality solutions or in-
consistencies have been denoted with the character “†” next to their reported
objective value in Table 7.

7.2 Warm-Started Single-Period Instances

As described in the introduction, in power engineering practice it is of interest
to address problem instances where a limited change in data occurs after solv-
ing a previous problem. In the context of this paper, we can therefore assume
that we have a warm-started formulation, i.e., one where we leverage previously
computed cuts. Here we present this warm-starting feature of our algorithm;
we justify its validity and show via numerical experiments its appealing lower
bounding capabilities.
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Table 7: Solvers’ Performance on i2 SOCP

Objective Time

Case Gurobi Knitro Mosek Gurobi Knitro Mosek

10192epigrids-api 1849683.44 1849684.2 - 37.44 19.4 30.74
10192epigrids-sad 1672998.72† 1672998.73 - 23.36 21.48 24.53
10480goc-api 2709110.52† 2709110.71 - 41.44 27.78 35.28
10480goc-sad 2287736.73 2287715.33 - 41.11 28.46 28.48
13659pegase 379142.67 - - 52.12 TLim 36.49
13659pegase-api 9287242.7 9287244.72 - 66.39 236.65 30.01
13659pegase-sad 8878803.69 - - 63.11 TLim 30.48
19402goc-api 2449100.15† 2449102.05 - 79.38 55.6 54.18
19402goc-sad 1954367.11† 1954367.2 - 180.97 59.46 82.55
20758epigrids-api - 3043275.95 - 79.03 64.17 56.02
20758epigrids-sad 2612841.71† 2612841.8 - 48.32 84.07 58.87
24464goc-api 2560829.65† - - 132.34 TLim 88.79
24464goc-sad 2605532.65† - - 74.43 916.1 65.41
ACTIVSg25k 5994727.45 - - 70.61 TLim 52.38
30000goc-api 1531320.78 1531322.2 - 96.91 593.73 71.38
30000goc-sad 1132242.88† 1132256.94 - 78.0 325.11 74.61
ACTIVSg70k 16333807.38† - - 300.98 TLim 209.3
78484epigrids-api 15882668.49 15882668.46 15882654.42 216.15 315.31 203.81
78484epigrids-sad 15180792.15 15180792.0 15180763.6 250.43 376.82 222.17

We note that the convex inequalities (20), which we use to develop cuts,
do not depend on input data such as loads or operational limits. Any such cut
remains valid and can be used if the associated branch remains operational.
This will be our strategy, below.

We created two kinds of perturbed instances: a) Instances were the load
of each bus was perturbed by a Gaussian (µ, σ) = (0.01 · Pd, 0.01 · Pd), where
Pd denotes the original load, subject to the newly perturbed load being non
negative; and b) instances were the transmission line which carries the largest
amount of active power in an ACOPF solution is turned off. With regards
to cases of type a), we focus on relatively small individual load changes to
model re-optimization after a relatively small time change. In the multi-period
setting, below, we consider much larger load changes, to capture hourly models.
Cases of type b) do change the structure of the network and in their warm-start
we removed any cuts associated with the switched-off branch.

Tables 8 and 9 summarize our warm-started experiments on perturbed
instances from our data set in Table 5 and compare our algorithm and solvers’
performance on the Jabr SOCP. “First Round” reports the objective value and
running time of the relaxation M0 loaded with the cuts computed in Table 5,
i.e., our warm-started relaxation. Moreover, under “Cutting-plane”, we report
on the objective value (at termination) and the total running time of our
cutting-plane procedure (on the warm-started relaxation). “Jabr SOCP” and
“Primal bound” report, respectively, on the objective value and running time
of the Jabr SOCP for the three solvers, and ACOPF primal solutions.
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We stress that after just one round, the bound provided by our algorithm
is already quite good – and also point out the comparison between the running
time for our first round, and the solvers’ running time.

Loads perturbed – Gaussian deltas. For most of these cases, our procedure
proves very tight lower bounds in less than 25 seconds (“First Round” column).
Judging by the time required by Knitro and by the number of cases in which
the solvers converge running the SOCPs, it appears that these instances are,
overall, more challenging than their unperturbed counterparts.

Our procedure also stands out in quickly lower bounding the largest cases.
For instance, a very sharp bound for case ACTIVSg70k is obtained in 102.25
seconds, taking less than half of the time it takes the fastest SOCP solver to
converge. Similar performance is achieved on the largest epigrids cases where
our method is 3 to 5 times faster.

An interesting empirical fact is that our cuts are robust with respect to
load perturbations. Indeed, our evidence shows that there is not a consider-
able improvement from the “First Round” to the “Last Round” objectives.
Thus, the previously pre-computed cuts loaded to M0 in the first iteration
are, already, accurately outer-approximating the SOC relaxations.

Our linearly constrained relaxations are able to prove infeasibility for the
modified case 9241pegase-api in 23.10 seconds while none of the three solvers
were able to provide a certificate of infeasibility for the Jabr SOCP. Knitro
required 1845.42 seconds to declare convergence to a locally infeasible solution.
Similar results are obtained for case 24464ogc-api.

The only case where our method fails to provide a valid lower bound is case
30000goc-sad – our minimization oracle reports numerical trouble and fails to
provide a solution to our warm-started relaxation. This is not surprising since
difficult numerical behavior was noticed when computing cuts for this case.

Transmission line with largest flow switched off. Overall, our method achieves
a similar performance on this set of perturbed instances as in a); sharp lower
bounds are obtained in about 25 seconds for most of the cases.

For this data set, our method and all of the SOCP solvers are able to
prove infeasibility relatively quickly. On the other hand, our method proves a
lower bound for ACTIVSg70k relatively quickly in the first round, but fails
to converge in the next round due to numerical trouble caused by the newly
added cuts.

As when perturbing loads, our warm-started formulation achieves a good
performance on the largest epigrid cases – bounds are sharp with respect to
the SOC relaxations and it is at least 3x faster.

7.3 Multi-Period Results

Data. At present, there is a dearth of publicly-available, realistic multi-period
AC load and generation data. One partial source is the set of cases developed
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for the GO3 Competition [45]13. Another partial source is the data set from
the optimization package “UnitCommitment.jl” for the SCUC problem [73];
however, the largest instance contains less than 14,000 nodes, which is not
among the largest publicly available instances. We are also aware that creating
good ACOPF data is a non-trivial task [54], [20], but given that there were no
publicly available multi-period load time-series to match the standard largest
AC cases we developed our own data sets14.

We created and worked with three data sets: (1) T = 4 with increasing15

(on expectation) active power loads, to be precise, at each time-period t ∈
{1, 2, 3}, P d

k,t is set to (1 + 0.01 · t + uk,t) · P d
k , where uk,t is a uniformly

distributed random variable with range [0, 0.025]; T = 12 where a half-a-day
active power load curved is simulated, see Figure 5; and (3) T = 24 where a 24
hr active power load curve is simulated, see Figure 6. Moreover, we assumed
50% generator ramp up ru and down rd rates for consecutive time-periods (see
Section 2.1) in all of the three settings.
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Fig. 5: 12hr load curve.
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Fig. 6: 24hr load curve.

Upper bound heuristics. In order to evaluate how tight a given lower bound is,
an upper bound is needed. We relied on two simple heuristics to compute upper
bounds. The first heuristic, which we term H1, consists in providing to Knitro
the complete multi-period formulation. The parameter setup for H1 is: absolute
feasibility tolerance equal to 10−6, while we set relative optimality tolerance
to 10−3; simple variables bounds are enforced throughout the optimization;
and Tftol = 3; and time limit of 2400 seconds for T = 4, and 7, 200 seconds
for T = 12, 24. If H1 fails, then we proceed with heuristic H2 which solves

13 The GO3 Competition does not provide explicit load data, since a welfare maximiza-
tion problem needs to be solved to determine the active and reactive power consumption.
We purposely avoided this dependence on the solution of another challenging optimization
problem.
14 These data sets can be downloaded from www.github.com/matias-vm.
15 Given that the PGLIB library [6] contains congested instances, we applied decreasing
(on expectation) active power loads perturbations to the PGLIB instances.
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one single-period ACOPF instance at a time, and upon convergence, fixes the
upper and lower limits of active power generation of the next instance as a
function of generator outputs in the current period. To be precise, for every
generator k ∈ G and any time-period t ∈ {0, . . . , T −2}, and provided that the
nonlinear solver converges for the single-period instance at time t, then the
output of generator k for the time-period t+1 is bounded by Pmin

k,t+1 ≤ P g
k,t+1 ≤

Pmax
k,t+1 where Pmin

k,t+1 := (1 − rdk,t+1)P
g
k,t and Pmax

k,t+1 := (1 + ruk,t+1)P
g
k,t. If the

solver fails to find a solution for some time-period, then we declare failure of
H2. Overall, H2 succeeded in most of the instances for which we were able to
obtain a primal bound. The parameter setup for H2 was the same as for H1
except that we set the time limit for single-period ACOPFs to 1, 200 seconds.

SOCPs: Solver parameters for multi-period instances. With respect to our
SOCP experiments, we set a time limit of 2, 400 seconds for T = 4 instances,
4, 800 seconds for T = 12, while we set 8, 000 seconds for T = 24 instances. In
what follows we describe the parameter specifications for each solver for the
SOCP runs.

– We use Gurobi’s default homogeneous self-dual embedding interior-point
algorithm (barrier method without Crossover, and Bar Homogeneous set to
1), and we set the parameter Numeric Focus equal to 1. Barrier convergence
tolerance and absolute feasibility and optimality tolerances were set to
10−6. Gurobi was allowed 20 threads.

– We use Knitro’s default Interior-Point/Barrier Direct Algorithm, with ab-
solute feasibility and optimality tolerances equal to 10−6. We used the
Intel MKL PARDISO sparse symmetric indefinite solver, and the Intel
Math Kernel Library (MKL) functions for Basic Linear Algebra Subrou-
tines (BLAS), i.e., for basic vector and matrix computations. Moreover, we
gave Knitro 20 threads to use for parallel computing features (10 threads
were given to the linear solver). When solving the SOCPs, we explicitly
instructed Knitro to handle the problem as convex, and to enforce simple
variable bounds throughout the optimization.

– We use Mosek’s default homogeneous and self-dual interior-point algorithm
for conic optimization. We set the relative termination tolerance, as well
as primal and dual absolute feasibility tolerances to 10−6. We assigned 20
threads to Mosek.

We recall the reader that we use the i2+(ρ) relaxation, with ρ = 100, as
target set for our cutting-plane multi-period experiments. For our cutting-
plane algorithm, when T = 4 a 1, 200 seconds time limit was enforced prior to
starting a new round of cutting; the time limit was 3, 600 seconds for T = 12,
and 6, 000 seconds for T = 24.

7.3.1 Not Warm-Started Cutting-Plane Algorithm: T = 4

Table 10 summarizes our not warm-started cutting-plane experiments on multi-
period instances with T = 4. Columns “# Vars”, “# Cons”, and “FTime”
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denote the number of variables, number of constraints and formulation time
of the base model MT

0 . Under “First Iteration” we report on the objective
value, running time, and maximum dual infeasibility error (see Section 6) of
the relaxation MT

0 , i.e., without any cuts. On the other hand, “Last Iteration”
presents the objective value, running time, total number of cuts held by the
model MT

last on the last iteration of the algorithm, and maximum dual infea-
sibility error. “Total” presents the total running time of our algorithm and
the total number of rounds of cuts, and “ACOPF” describes the number of
variables, number of constraints, and the objective value and running time of
each ACOPF primal solution.

Overall, we can see that lower bounds are fairly tight; even our base model
MT

0 without any cuts, whose objective value is shown under “First Iteration”,
attains quick and sharp lower bounds for these multi-period instances. For
instance, an optimality gap of 6.91% is achieved by MT

0 for case ACTIVSg70k,
and, after three rounds of cuts, nearly 800,000 cuts drive the gap down to
1.75%.

Our cut management heuristics prove to be empirically successful: dual in-
feasibility reported by Gurobi is either maintained or slightly worsened (com-
pare “DInfs” of “First Iteration” versus that of “Last Iteration”) after adding
a significant number of cuts. This means that our cuts are keeping our lin-
early constrained relaxation numerically stable and that our reported lower
bounds are reasonably accurate (Section 6). Moreover, we observe that in-
stances which require a significant number of rounds of cuts, say 10 or more,
under the given time limit, notoriously benefit from our cut clean-up heuris-
tic. We see that a small number of cuts (roughly 10% of the total number of
constraints) is good enough to outer-approximate the rotated-cones and attain
sharp ACOPF lower bounds (as in the single-period case; Section 7.1.1).

7.3.2 Warm-Started Cutting-Plane Algorithm: T = 4, 12, 24

We use a simple methodology to warm-start the algorithm described in Sec-
tion 5.2.2: we propagate cuts for the original instances to every time-period.
To be precise, we create a pool that includes, for each branch {k,m} ∈ E ,
all the associated single-period cuts – which are assumed to have been previ-
ously computed (Section 7.1.1). The cuts in the pool are propagated to every
time-period t ∈ {0, . . . , T − 1} and are added to the base model MT

0 .
In Tables 11 and 12 we present the results of our warm-started experiments

with T = 4. In Table 11 we compare our lower bounds (obtained by warm-
starting our base model with precomputed cuts) against the lower bounds
obtained by solving the Jabr SOCPs with each of the three commercial solvers.
In Tables 12, 16, and 17 we compare our bounds against the performance of
the solvers on the i2+(ρ) relaxation plus Jabr inequalities for every branch
whose i2 inequality is bad; this relaxation is numerically better behaved than
the i2 SOCP (see discussion in Section 4.5).

In both tables the columns “# Vars”, “# Cons”, and “FTime” denote
the number of variables, number of constraints and formulation time of the
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base model MT
0 (before adding the previously computed cuts). ‘First Itera-

tion” reports on the objective value, running time, the number of cuts with
which the instance was warm-started, and the maximum dual infeasibility
error (Section 6) of the warm-started relaxation M0

T . Multi-column “Last It-
eration” presents the objective value, running time, total number of cuts held
by the model MT

last on the last iteration of the algorithm, and maximum dual
infeasibility error of model MT

last. “Total” presents the total running time of
our algorithm and the total number of rounds of cuts. Under the header “Jabr
SOCP”, columns “#Vars” and “#Cons” denote the number of variables, num-
ber of constraints of the Jabr SOCP (which are the same for the three solvers
given that we used a common AMPL model file), and “Obj” and “Time” show
the objective value and running time of the Jabr SOCP for each solver. Fi-
nally, under column “ACOPF” we report objective value of an ACOPF primal
solution.

As in the single-period experiments (Tables 8 and 9), “First Iteration”
shows that our warm-started relaxation, i.e., model MT

0 loaded with the prop-
agated precomputed cuts, attains sharp bounds fairly quickly. A notable ex-
ample, in which at least 2 solvers converge in Table 11, is case ACTIVSg25k
for which Gurobi solves the convex QP in 94 seconds resulting in 2.1% opti-
mality gap. Moreover, after 9 rounds of cuts our algorithm is able to drive the
down the optimality gap to 0.5% at very high accuracy (Figure 8).

Dual infeasibility in (11), as in the not warm-started experiments, is not
significantly worsened by our cuts, i.e., they do not seem to ill-condition our
instances. On the contrary, we see that for some instances, our cut management
heuristics are able to improve on this metric. In Figure 7 we illustrates the
evolution of the number of outer-envelope cuts with respect to iterations of
our cutting-plane algorithm for two T = 4 warm-started cases. For instance,
ACTIVSg10k was warm-started with 28,184 cuts, and peaked 111,323 cuts
at iteration 6 which corresponds to the chosen threshold Tage (Section 5.2.1).
From the 7th iteration onward, there is a steady cut-cleansing ending up with
51, 188 cuts. As expected, both instances end up with more cuts than were
present when warm-started.

With respect to the solvers’ performance on the SOCPs, we see that all of
the solvers struggle. In Table 11 we see differences up to the second digit in the
objective values of instances on which at least 2 solvers converge, which cor-
roborates that these are numerically challenging instances. Table 12 exhibits
even more striking results; here we ran the solvers on the i2+(ρ) relaxation (the
relaxation that we are outer-approximating with our cutting-plane algorithm).

In Appendix K, we present tables 16 and 17 which show computational
results for our T = 12 and T = 24 instances. We see that Gurobi is able to
robustly handle our very large LPs and convex QPs, such as case ACTIVSg70k,
with almost 19 million variables and 20 million constraints. For this instance,
we load 1.5 million precomputed cuts, and after two rounds of cuts we end up
with 3.35 million cuts, and the solver outputs a lower bound with very small
dual infeasibilities. For these large instances, we were only able to compute an
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AC primal bound for case 1354pegase T = 12; our heuristics failed in all the
other instances with T = 12 and T = 24.
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Fig. 7: Cut management for T = 4 warm-
started instances.
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Fig. 8: Lower bounds for case ACTIVSg25k
and number of cuts.

On tables 13 and 14 we compare our linearly-constrained warm-started
relaxation against multi-period DCOPF16. We report on the number of vari-
ables and constraints for each instance, as well as the objective, total running
time, and dual infeasibility17. We remind the reader that DCOPF is a linearly-
constrained approximation of ACOPF, not a relaxation [9]; hence, DCOPF in-
feasibility does not necessarily imply that the associated ACOPF is infeasible,
in sharp contrast to what any relaxation for ACOPF guarantees.

Our ACOPF relaxations quadruple the size (in terms of number of vari-
ables and constraints) of the corresponding multi-period DCOPF instances.
Gurobi clearly runs faster on multi-period DCOPF. Interestingly, there are
some DCOPF instances for which Gurobi does not converge18 – either because
of suboptimal termination or because it runs into numerical trouble – while it
does converge for our ACOPF relaxations attaining small dual infeasibilities.

7.4 Stability of Dual Variables for Active-Power Balance Constraints

In current energy pricing rules [61,40], dual variables associated with active-
power balance constraints (1b) of a welfare maximization problem constitute a
key input for computing Locational Marginal Prices (LMPs). In general, linear

16 Multi-period DCOPF is solved with Gurobi using the same parameter setup as our
cutting-plane algorithm.
17 For our relaxation, we report on the last iteration of our cutting-plane algorithm. More-
over, the number of constraints includes the total number of cuts kept during the last
iteration.
18 We remind the reader that there are alternative formulations of DCOPF. Rather than
directly solving an LP or convex QP, such alternative approaches could significantly enhance
computational efficiency by exploiting problem structure (deploying a delayed constrained
generation algorithm where the decision variables are nodal injections).
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Table 13: Warm-Started Relaxation versus DCOPF, T = 12

Warm-Started Relaxation DCOPF

Case #Vars #Cons Obj Time DInfs #Vars #Cons Obj Time Dinfs

1354pegase 201209 250008 860664.27 92.63 1.06e-08 62369 67828 850023.48 2.44 1.72e-10
9241pegase 1574972 1980693 3565252.49 3811.42 4.32e-04 447608 477952 3627501.88 18.06 3.76e-10
ACTIVSg10k 1375020 1639853 28690135.28 1308.80 3.38e-07 449628 501812 28187885.77 19.50 2.34e-07
10000goc-api 1401204 1686928 28459989.11 1066.39 2.40e-08 446364 490232 INF 20.15 -
10000goc-sad 1401204 1647684 16474320.51 1450.12 3.36e-06 446364 490232 16114986.72 19.96 2.21e-07
ACTIVSg25k 3447015 4472632 69534077.06 4073.97 9.75e-07 1097943 1199456 67992943.20 48.82 7.88e-07
30000goc-api 3768147 4484763 17079448.81 3667.40 1.06e-05 1225815 1299860 - 75.87 -
30000goc-sad 3768147 4373646 13190466.44 3901.76 2.45e-06 1225815 1299860 12846216.92 53.33 7.65e-08
ACTIVSg70k 9368583 11913750 188736994.5 4702.30 3.66e-08 2977455 3195644 - 175.35 -
78484epigrids-api 12551704 14607420 INF 447.39 - 3555448 3699780 INF 4.19 -
78484epigrids-sad 12551704 16185978 177335668.05 5465.67 1.36e-04 3555448 3699780 - 175.91 -

Table 14: Warm-Started Relaxation versus DCOPF, T = 24

Warm-Started Relaxation DCOPF

Case #Vars #Cons Obj Time DInfs #Vars #Cons Obj Time Dinfs

1354pegase 402677 503633 1666609.97 180.61 2.97e-08 124997 136696 1646661.83 4.61 2.15e-10
9241pegase 3151388 4613025 6925029.02 8419.66 1.25e-03 896660 961684 7013508.62 36.02 5.25e-10
ACTIVSg10k 2752524 3290672 55184650.09 2869.25 7.18e-08 901740 1013564 54241448.25 37.77 5.44e-08
10000goc-api 2804496 3403822 53800966.46 2273.58 3.18e-07 894816 988820 INF 40.25 -
10000goc-sad 2804496 3262316 32678842.78 3099.33 7.97e-06 894816 988820 32120062.03 41.02 1.97e-06
ACTIVSg25k 6898863 8756843 134142620.00 6991.16 2.08e-06 2200719 2418248 131325272.36 95.18 5.69e-09
30000goc-api 7539819 9332691 31616476.13 6799.92 2.06e-05 2455155 2613824 - 171.42 -
30000goc-sad 7539819 9661317 25811075.96 6249.53 1.23e-05 2455155 2613824 25279287.29 108.86 2.22e-08
ACTIVSg70k 18747555 23469443 357083446.24 8496.71 2.98e-08 5965299 6432848 - 829.66 -
78484epigrids-api 25110280 24855336 - 2138.78 - 7117768 7427052 INF 380.67 -
78484epigrids-sad 25110280 30188832 344805634.00 5399.62 1.34e-04 7117768 7427052 - 513.08 -

models such as DCOPF are used for pricing because of their computational
tractability. The trade-offs of using such approximations are well-known. As
stated in [12], “If DCOPF does not adequately reflect the physics of the power
grid, the prices retrieved from the DCOPF solution will not be accurate. Thus,
tighter relaxations of ACOPF could lead to prices that better reflect scarcity
in the physical network.” Among their findings, the authors empirically show
that nonlinear tighter relaxations such as the Jabr SOCP or the QC relaxation
mitigate biasedness in price signals, in particular in congested networks, and
lead to higher welfare.

Given the theoretical and empirical evidence presented in this paper, we
believe that our linearly constrained relaxation is well-placed as a potential
substitute for DCOPF in electricity market pricing. A first step in evaluat-
ing its potential is to understand whether the dual variables associated to
active-power balance constraints of our dynamically built linearly constrained
relaxations numerically converge to some vector of duals. In Table 15 and
Figure 9 below we provide preliminary evidence of numerical convergence for
medium-sized T = 4 instances. At each iteration k > 1 of our cutting-plane
algorithm, we obtain the corresponding vector of duals λk and compute its
Euclidean distance to its predecessor λk−1.

8 Conclusions and Future Work

In this paper we present a fast linear cutting-plane method used to obtain tight
relaxations for even the largest single and multi-period ACOPF instances,
by appropriately outer-approximating the SOC relaxations. Our relaxations
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Table 15: On the convergence of dual variables of active-power balance constraints T = 4

||λk − λk−1||2
Case k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16 k = 18

1354pegase 42.5161 9.2024 2.9110 2.0099 1.0506 0.4326 0.189 0.1038 0.0494
ACTIVSg20000 2590.985 481.1567 133.0116 67.344 38.3696 13.2228 7.9999 2.8572 2.5617
2869pegase 84.6365 14.806 5.7585 3.4687 2.4777 0.9821 0.8868 0.4770 1.8608
6468rte 232.8488 42.6396 14.7121 7.3318 4.1112 1.5908 1.2435 0.3554 0.6279
ACTIVSg10k 6394.2841 1712.8186 475.1414 104.5385 54.3611 17.6938 8.4489 7.7985 4.2688

2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

Cutting-plane Iteration k

||λ
t
−

λ
t−

1
|| 2

1354pegase
AVTIVSg2000
2869pegase
6468rte

ACTIVSg10k

Fig. 9: Distance between dual variables of active-power balance constraints of consecutive
cutting-plane iterations.

can be constructed and solved robustly and quickly via a cutting-plane al-
gorithm that relies on proper cut management and leverages mature linear
programming technology. Moreover, we provide a theoretical justification for
the tightness of two SOC relaxations for ACOPF as well as for the use of our
linearly-constrained relaxations.

The central focus on this paper concerns reoptimization. We show that
our procedure possesses efficient warm-starting capabilities – previously com-
puted cuts, for some given instance, can be re-utilized and loaded into new
runs of related instances, hence leveraging previous computational effort. As
a main contribution we demonstrate, through extensive numerical testing in
medium to (very) large multi-period instances, that the warm-start feature for
our cutting-plane algorithm yields tight and accurate bounds far faster than
otherwise possible. It is worth noting that this capability stands in contrast
to what is possible using nonlinear (convex) solvers.

We bring forth to the ACOPF literature a discussion on approximate so-
lutions to convex relaxations to ACOPF and their accuracy as lower bounds.
We show that linearly-constrained relaxations with convex quadratic objective
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possess robust theoretical guarantees for bounding challenging optimization
problems, in sharp contrast to what nonlinear relaxations such as SOCPs can
offer.

We believe our work paves the way for promising new research directions.
For instance, since our relaxations are linear they could be deployed for prac-
tical pricing schemes which could increase welfare and mitigate biasedness
in price signals [12]. Moreover, we believe our relaxation can be used for
harder multi-period ACOPF features such as unit-commitment or security
constraints, hence it would be interesting to evaluate its performance on these
challenging problems. We are also interested in developing new heuristics for
finding multi-period (T = 12 and 24 time-periods) ACOPF solutions for large-
scale networks exploiting solutions to our linearly-constrained relaxations.
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A i2 SOCP strictly stronger than Jabr SOCP

We numerically show that for case 1354pegase its i2 SOCP relaxation is strictly stronger
than its Jabr SOCP relaxation. Knitro attains an optimal solution to the Jabr SOCP of value
74009.28 while an optimal solution to the i2 SOCP has value 74013.68. As a sanity check,
we fixed, within tolerance ±10−5, the solution to the Jabr SOCP in the i2 SOCP formula-
tion; Gurobi declared the resulting SOCP infeasible and provided the following Irreducible
Inconsistent Subsystem (IIS):
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B Definition of the i2 variable

Let the admittance matrix for line {km} be

Y :=

(y + ysh

2

)
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τ2 −y 1

τe−jσ

−y 1
τejσ

y + ysh

2

 = G+ jB

where y = g + jb denotes it’s series admittance, shunt admittance is denoted by ysh =
gsh + jbsh, and N := τejσ denotes the transformer ratio of magnitude τ > 0 and phase
shift angle σ.

Recall that Ohm’s Law states that the current flowing from bus k to m via transmis-

sion line {km} is given by
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since yysh∗ = (ggsh + bbsh) + j(bgsh − gbsh). Moreover, the first term of the RHS of (27)
can be written as
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Putting everything together yields
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Since |Vk||Vm| cos(θkm−σ) = ckm cos(σ)+skm sin(σ) and |Vk||Vm| sin(θkm−σ) = skm cos(σ)−
ckm sin(σ) we can represent i

(2)
km := |Ikm|2, linearly, in terms of the fundamental variables

v
(2)
k ,v

(2)
m , ckm, and skm as
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where
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C Proof of Proposition 2

By (14b) we have that the Jabr inequality c2km+s2km ≤ v
(2)
k v

(2)
m can be written as ||(2ckm, 2skm, v

(2)
k −

v
(2)
m )||2 ≤ v
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m . Hence, taking λ = (1, 0, 0)⊤, and using (15) we have
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On the other hand, by summing up equations (6b) and (6a) we have

ℓkm = Gkkv
(2)
k +Gmmv

(2)
m − 2Gkmckm

≥ min{Gkk, Gmm}(v(2)k + v
(2)
m − 2ckm)

given our assumptions on Gkk, Gmm, Gkm, Gmk. Therefore, (30) implies ℓkm ≥ 0.
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D Proof of Proposition 3

First, we note that if yshkm = 0, a simple calculation yields

ℓkm = gkm

∣∣∣∣ 1τ Vk − ejσVm

∣∣∣∣2 ,
Ikm =

y

τ

(
1

τ
Vk − ejσVm

)
see B. Therefore i

(2)
km ≥ 0 clearly implies ℓkm ≥ 0.

E Proof of Proposition 5

First, we show that for every (x, s) ∈ C the inequality (x′)⊤x ≤ ||x′||s holds. Indeed,
by Cauchy-Schwartz inequality we have that (x′)⊤x ≤ ||x′||||x||, and since ||x|| ≤ s the
inequality follows. Next, we show that the point (x0, s0) defined by s0 := (||x′||+ s′)/2 and
x0 := (s0/||x′||)x′ lies on (x′)⊤x = ||x′||s. Certainly, (x′)⊤x0 = (s0/||x′||)||x′||2 = s0||x′||.
Moreover, (x0, s0) lies on C since ||x0|| = ||(s0/||x′||)x′|| = s0. Finally, we show that the
vector (x0−x′, s0−s′) is orthogonal to the plane (it suffices to take the vector (x0, s0) since
(0, 0) lies on C). It can be readily checked that ||(x0, s0)||2 − (x′)⊤x0 − s′s0 = 0.

F Proof of Proposition 6

Since (x′)2 + (y′)2 > r2, there exists some 0 < t0 < 1 such that (t0x′)2 + (t0y′)2 = r2.
It can be readily checked that t0(x′, y′) is the projection of (x′, y′) onto Sr. Therefore, the
normal to the separating hyperplane is (1− t0)(x′, y′) and the RHS is (1− t0)t0||(x′, y′)||22,
in other words, (x′)x+ (y′)y ≤ r||(x′, y′)||2 is the desired valid inequality since 0 < t0 < 1.

G Proof of Proposition 4

Let {k,m} ∈ E be an arbitrary transmission line, and denote by A := g2 + b2, B :=
ggsh + bbsh and C := (gsh2 + bsh2)/4, see (29). We drop the subscripts for clarity of
exposition. Then, the coefficients in (19) can be written as

β

α
= τ2

A
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γ

α
= τ
− cos(σ)(2A+B) + sin(σ)(bgsh − gbsh)
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ζ

α
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Since we assumed |b| > bsh, gsh = 0, and |b| > g we have that A+ B > 0, hence the ratios
γ
α

and ζ
α

can be upper-bounded by

τ

(
2A+ |bbsh|
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+
|gbsh|

A+B + C

)
.

In consequence, we have the following upper-bounds

β

α
≤ τ2,

γ

α
≤ 3τ,

ζ

α
≤ 3τ.
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H Proof of Proposition 8

Consider a network consisting of two buses and a line joining them. There is one generator
located at bus 1 and a load located at bus 2. The transmission line is simple (i.e., no shunts
or transformers) and has series admittance y = g+jb with g > 0, b < 0 and −b > g. Assume
that the voltages at both buses are fixed to 1, that reactive power generation is unconstrained
and that the line limit is very large. Finally, suppose that the objective consists in minimizing
active generation. Additionally, there is no explicit reactive power load. We can make the
following observations:

1. Active power balance constraints: P1,2 = P g
1 and P2,1 = −P d

2 ;
2. Power flows: P1,2 = g − gc1,2 − bs1,2 and P2,1 = g − gc1,2 + bs1,2;
3. Jabr inequality: c21,2 + s21,2 ≤ 1.

Since reactive power generation is unconstrained and the line limit is very large, we do not
have to write reactive power flows. Therefore, we can write the Jabr SOCP for this AC
network as

OPT := min g − gc1,2 − bs1,2

subject to:

g − gc1,2 + bs1,2 = −P d
2 (31a)

c21,2 + s21,2 ≤ 1 (31b)

Since the network is radial, we know that imposing (31b) as an equation yields an exact
ACOPF formulation [46,35]. Given that (31a) is linear in c1,2, s1,2 and constraint (31b)
represents the unit circle, for a particular choice of parameters g, b, and P d

2 , the line repre-
sented by (31a) will intersect the boundary of the unit circle at exactly two points. These
points will be the unique two AC feasible solutions for this instance, while their convex hull
represents the feasible region of the SOCP. Finally unless the objective is orthogonal to the
hyperplane defined by constraint (31a) the SOCP optimum will be exactly one of the two
AC feasible points. We derive analytically these two AC points. Indeed, by substituting the
expression for s1,2 in (31a) into (31b) we obtain(

g2 + b2

b2

)
c21,2 − 2

(g
b

)
γc+ (γ2 − 1) = 0, γ :=

P d + g

b

=⇒ c1,2 =
(g/b)γ ±√α
(g2 + b2)/b2

, α := 1 +
(g
b

)2
− γ2.

Moreover, solving for P d in terms of α we have

P d = −g ±
√

g2 − b2(α− 1).

Letting g = 3, b = −8, α = 3/4, gives us P d = 2 and γ = −5/8. This choice of parameters
implies that the s1,2-intercept in the c1,2 − s1,2 plane of the line (31a) is strictly between
(−1, 1), hence there are exactly two AC feasible solutions and moreover they are irrational

c̃1,2 =
(15/64) + (

√
3/2)

(9/64) + 1
, s̃1,2 = −(3/8)

(
(15/64) + (

√
3/2)

(9/64) + 1

)
+ (5/8)

ĉ1,2 =
(15/64)− (

√
3/2)

(9/64) + 1
, ŝ1,2 = −(3/8)

(
(15/64)− (

√
3/2)

(9/64) + 1

)
+ (5/8)

Given that the objective is not orthogonal to the linear constraint, and that it lies in the
second quadrant, we conclude that the optimal solution to the Jabr SOCP is (c̃1,2, s̃1,2) ≈
(0.9647, 0.2632).
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We conclude by showing that the dual of (31) has a unique maximizer which is irrational
as well. Indeed, let λ ∈ R and δ ∈ R+ be the dual variables associated to the constraints (31a)
and (31b), respectively, and consider the following Lagrangean dual:

L(c1,2, s1,2;λ, δ) : = g − gc1,2 − bs1,2 + λ(g − gc1,2 + bs1,2 + P d
2 )

+ δ(c21,2 + s21,2 − 1)

The function L(c1,2, s1,2;λ, δ) is convex quadratic in the variables c1,2, s1,2. Given that
Slater’s condition holds for (31), we have that an optimal primal-dual pair must satisfy the
KKT condition (Lagrangean optimality)

OPT = min
c1,2,s1,2

L(c1,2, s1,2;λ
∗, δ∗) (32)

= L(c∗1,2, s
∗
1,2;λ

∗, δ∗) (33)

where (c∗1,2, s
∗
1,2, λ

∗, δ∗) is an optimal primal-dual pair. It can be readily checked that the
first-order stationarity condition implies that

2δ∗c∗1,2 − g(1 + λ∗) = 0 (34)

2δ∗s∗1,2 + b(λ∗ − 1) = 0. (35)

Since we previously showed that the unique minimizer of (31) is the irrational solution
(c̃1,2, s̃1,2), we have that c∗1,2 = c̃1,2 and s∗1,2 = s̃1,2. Therefore, equations (34) and (35)

imply that (λ∗, δ∗) must also be irrational.

I Proof of Proposition 7

Let x̃ ∈ Rn such that Ax̃ ≥ b− ϵe, where e denotes the all-ones vector. Let [D] denote the
Lagrangean Dual problem of [P ] on variables λ ∈ Rm. Consider a primal-dual optimal pair
(x, λ) ∈ Rn × Rm such that λ is a rational vector that satisfies ||λ||1 ≤ g(A, b,H, c), where
g is a polynomial in the length of the input A, b,H, c. Such a solution λ exists by strong
duality for convex QPs, we assumed [P ] is feasible and bounded, and by Section 2 in [70]).
Strong duality also implies that (x, λ) satisfies KKT conditions (i) Lagrangean optimality

∇f(x) = A⊤λ and (ii) complementary slackness λ
⊤
(b− Ax) = 0. In addition, given that f

is convex and differentiable we have that f(x) +∇f(x)⊤(x − x) ≤ f(x) for every x ∈ Rn.
In consequence,

f(x̃) ≥ f(x) +∇f(x)⊤(x̃− x)

= f(x) + (A⊤λ)⊤(x̃− x)

= f(x) + λ
⊤
(Ax̃)− λ

⊤
(Ax)

≥ f(x) + λ
⊤
(b−Ax)− ϵ||λ||1

= f(x)− ϵ||λ||1
≥ f(x)− ϵg(A, b,H, c).

J Superoptimality and SOCPs

Consider the following SOCP:
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[1] p := min c⊤x

subject to:

||yi||2 ≤ ti i ∈ [m]

yi = Aix+ bi, ti = c⊤i x+ di i ∈ [m]

Ax ≥ b

Its dual is given by:

[2] d := min λ⊤b−
m∑
i=1

(uidi + v⊤i bi)

subject to:

||vi||2 ≤ ui i ∈ [m]

c⊤ =λ⊤A+

m∑
i=1

(v⊤i Ai + uic
⊤
i )

λ, ui ≥ 0

Lemma 1 Suppose that [1] is strictly feasible and p > −∞. Then strong duality holds, i.e.,
p = d, and there exists an optimal primal-dual pair (x, (yi, ti)i∈[m]), (λ, (vi, ui)i∈[m]). Let

(x̃, (ỹi, t̃i)i∈[m]) be an ϵ-feasible solution to the primal problem [1], i.e., it satisfies

ϵ := max
{
max{bi −A⊤

i x̃ : i ∈ [m]},max{||ỹi||2 − t̃i : i ∈ [m]}
}
.

Then,
c⊤x̃ ≥ p− ϵ(||λ||1 + ||u||1). (36)

Proof Let em the all-ones vector in Rm. Then,

c⊤x̃ = λ
⊤
Ax̃+

m∑
i=1

(v⊤i Aix̃+ uic
⊤
i x̃)

≥ λ
⊤
(b− ϵem) +

m∑
i=1

(v⊤i (ỹi − bi) + ui(t̃i − di))

= λ
⊤
b− ϵ||λ||1 +

m∑
i=1

(v⊤i ỹi + ui t̃i)−
m∑
i=1

(v⊤i bi + uidi)

≥ p− ϵ||λ||1 +
m∑
i=1

(v⊤i ỹi + ui(||ỹi||2 − ϵ))

= p− ϵ||λ||1 − ϵ||u||1 +
m∑
i=1

(v⊤i ỹi + ui||ỹi||2)

≥ p− ϵ(||λ||1 + ||u||1),

where the last inequality follows since if ||vi||2 ≤ ui then −v⊤i ỹi ≤ ||vi||2||ỹi||2 ≤ ui||ỹi||2
for all i ∈ [m].

K Warm-Started Relaxation T = 12, 24
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